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Preface

In writing this monograph my aim has been to present a “geometric”
approach to the structural synthesis of multivariable control systems that
are linear, time-invariant and of finite dynamic order. The book is addressed
to graduate students specializing in control, to engineering scientists
engaged in control systems research and development, and to mathemati-
cians with some previous acquaintance with control problems. The present
edition of this book is a revision of the preliminary version, published in
1974 as a Springer-Verlag “Lecture Notes” volume; and some of the remarks
to follow are repeated from the original preface.

The label “geometric” in the title is applied for several reasons. First and
obviously, the setting is linear state space and the mathematics chiefly linear
algebra in abstract (geometric) style. The basic ideas are the familiar system
concepts of controllability and observability, thought of as geometric
properties of distinguished state subspaces. Indeed, the geometry was first
brought in out of revulsion against the orgy of matrix manipulation which
linear control theory mainly consisted of, not so long ago. But secondly and
of greater interest, the geometric setting rather quickly suggested new
methods of attacking synthesis which have proved to be intuitive and econo-
mical; they are also easily reduced to matrix arithmetic as soon as you want
to compute. The essence of the “geometric” approach is just this: instead of
looking directly for a feedback law (say u = Fx) which would solve your
synthesis problem if a solution exists, first characterize solvability as a
verifiable property of some constructible state subspace, say . Then, if all is
well, you may calculate F from & quite easily. When it works, the method
converts what is usually an intractable nonlinear problem in F, to a straight-
forward quasilinear one in . The underlying mathematical idea is to ex-
ploit the semilattice structure of suitable families of subspaces of the state
space.
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viii Preface

By this means the first reasonably effective structure theory has been
given for two control problems of longstanding interest: regulation, and
noninteraction. It should, nevertheless, be emphasized that our major con-
cern is with “synthesis” as distinguished from “design.” In our usage of these
terms, “synthesis” determines the structure of the feedback control, while
“design” refers to the numerical massaging (ideally, optimization) of free
parameters within the structural framework established by synthesis. In this
sense, design as such is not explored in detail; it is, in fact, an active area of
current research.

The book is organized as follows. Chapter 0 is a quick review of linear
algebra and selected rudiments of linear systems. It is assumed that the
reader already has some working knowledge in these areas. Chapters 1-3
cover mainly standard material on controllability and observability,
although sometimes in a more “geometric” style than has been customary,
and at times with greater completeness than in the literature to date. The
essentially new concepts are (A, B)invariant subspaces and (4, B)-
controllability subspaces: these are introduced in Chapters 4 and 5, along
with a few primitive applications by way of motivation and illustration. The
first major application—to tracking and regulation—is developed in
leisurely style through Chapters 6-8. In Chapters 6 and 7 purely algebraic
conditions are investigated, for output regulation alone and then for regula-
tion along with internal stability. Chapter 8§ attacks the problem of struc-
tural stability, or qualitative insensitivity of the regulation property to small
variations of parameters. The result is a simplified, “generic” version of the
general algebraic setup, leading finally to a structurally stable synthesis, as
required in any practical implementation. In part, a similar plan is followed
in treating the second main topic, noninteracting control: first the algebraic
development, in Chapters 9 and 10, then generic solvability in Chapter 11.
No description is attempted of structurally stable synthesis of noninteracting
controllers, as this is seen to require adaptive control, at a level of complex-
ity beyond the domain of fixed linear structures: but its feasibility in prin-
ciple should be plausible. The two closing Chapters 12 and 13 deal with
quadratic optimization. While not strongly dependent on the preceding
geometric ideas the presentation, via dynamic programming, serves to
render the book more self-contained as the basis for a course on linear
multivariable control.

The framework throughout is state space, only casual use being made of
frequency domain descriptions and procedures. Our viewpoint is that time
and frequency domains each enjoy their proper role in multivariable control
theory, and we do not insist, let alone demonstrate, that problems and
results in the one domain necessarily dualize to the other. On the other
hand, frequency interpretations of our results, especially by means of signal
flow graphs, have been provided when they are readily available and seem
helpful. Further research along this line might well be fruitful.

A word on computation. The main text is devoted to the geometric
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structure theory itself. To minimize clutter, nearly all routine numerical
examples have been placed among the exercises at the end of each chapter.
In this way each of the major synthesis problems treated theoretically is
accompanied by a skeleton procedure for, and numerical illustration of, the
required computations. With these guidelines, the reader should easily learn
to translate the relatively abstract language of the theory, with its stress on
the qualitative and geometric, into the computational language of everyday
matrix arithmetic.

It should be remarked, however, that our computational procedures are
“naive,” and make no claim to numerical stability if applied to high-
dimensional or ill-conditioned examples. Indeed, one of the strengths of the
“geometric approach” is that it exhibits the structure theory in basis-
independent fashion, free of commitment to any particular technique of
numerical computation. The development of “sophisticated” computing
procedures, based on state-of-the-art numerical analysis, is a challenging
topic of current research, to which the reader is referred in the appropriate
sections of the book.

On this understanding, it can be said that our “naive” procedures are, in
fact, suitable for small, hand computations, and have been programmed
successfully in APL by students for use with the book. The exercise of
translating between the three levels of language represented by geometric
structure theory, matrix-style computing procedures, and APL programs,
respectively, has been found to possess considerable pedagogical value.

The present edition differs from the first mainly in Chapter 8, which has
been rewritten to better exhibit the role of transversality as the geometric
property underlying structurally stable linear regulation and the “Internal
Model Principle.” For the rest, some minor errors in the first edition have
been corrected and some improvements made in exposition: for this it is a
pleasure to acknowledge the suggestions and criticisms of Bruce Francis,
Huibert Kwakernaak, Alan Laub, Bruce Moore and Jan Willems.

I decided against attempting to include in the book everything that is
currently known within the geometric framework, two notable omissions
being the results on decentralized control and on “generalized dynamic
covers,” due respectively to Morse and to Silverman and their coworkers.
However, the reader who has completed Chapter 5 of the book should be
well prepared to explore the journals.

Finally, thanks are due once more to Professor A. V. Balakrishnan and
Springer-Verlag for their encouragement and assistance; and to Mrs. Rita de
Clercq Zubli for her expert typing of the manuscript.

Toronto W. M. WONHAM
July, 1978
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Mathematical
Preliminaries

For the reader’s convenience we shall quickly review linear algebra and the
rudiments of linear dynamic systems. In keeping with the spirit of this book
we emphasize the geometric content of the mathematical foundations, laying
stress on the presentation of results in terms of vector spaces and their
subspaces. As the material is standard, few proofs are offered; however,
detailed developments can be found in the textbooks cited at the end of the
chapter. For many of the simpler identities involving maps and subspaces,
the reader is invited to supply his own proofs; an illustration and further
hints are provided in the exercises. It is also recommended that the reader
gain practice in translating geometric statements into matrix formalism, and
vice versa; for this, guidance will also be found in the exercises.

0.1 Notation

If k is a positive integer, k denotes the set of integers {1,2,..., k}. f Aisa
finite set or list, |A| denotes the number of its elements. The real and
imaginary parts of a complex number etc. are written Re, i, respectively.
The symbol := means equality by definition.

0.2 Linear Spaces
We recall that a linear (vector) space consists of an additive group, of ele-
ments called vectors, together with an underlying field of scalars. We con-

sider only spaces over the field of real numbers R or complex numbers C.

1



2 0 Mathematical Preliminaries

The symbol F will be used for either field. Linear spaces are denoted by
script capitals 2, %, .. .; their elements (vectors) by lower case Roman letters
X, ¥, ...; and field elements (scalars) by lower case Roman or Greek letters.
The symbol 0 will stand for anything that is zero (a number, vector, map, or
subspace), according to context.

The reader will be familiar with the properties of vector addition, and
multiplication of vectors by scalars: for instance, if x;, x, € 2 and ¢, ¢, € F,
then

1%, € X, ei(xy + X3) = c;x; + ¢y %5,
(c1 + ca)xy = ¢yx; + 3%, (crea)xy = cy(eyxy).
Let x,, ..., x, € &, where Z is defined over F. Their span, written
Spang{xy, ..., x,} or Spangx,, ie k}

is the set of all linear combinations of the x;, with coefficients in F. The
subscript F will be dropped if the field is clear from context. Z is finite-
dimensional if there exist a (finite) k and a set {xi,i e k;x; € 7} whose span is
Z. I Z + 0, the least k for which this happens is the dimension of &, written
d(Z); when Z =0, d(Z)=0. If k = d(Z) # 0, a spanning set {x;, i  k} is a
basis for Z.

Unless otherwise stated, all linear spaces are finite dimensional; the rare
exceptions will be some common function spaces, to be introduced only
when needed.

A set of vectors {x; € Z, i € m} is (linearly) independent (over F) if for all
sets of scalars {c; € F, i € m}, the relation

M=

Cixi = 0 (2.1)
; |

implies ¢;=0 for all iem. If the x, (ie m) are independent, and if
x € Span{x;, i € m}, then the representation

X = Cy Xy F T F € Xy

is unique. The vectors of a basis are necessarily independent. If m > d(Z), the
set {x;, i € m} must be dependent, i.e. there exist c, € F (i € m) not all zero,
such that (2.1) is true.

Let d(Z)=n and fix a basis {x;,ien). If xe Z then x = cy Xy +
"+ ¢, x, for unique ¢; € F. For computational purposes x will be repre-
sented, as usual, by the n x 1 column vector colfcy, ..., ¢,]. As usual,
addition of vectors, and scalar multiplication by elements in F, are done
componentwise on the representative column vectors.

In most of our applications, vector spaces 2" etc. will be defined initially
over R. It is then sometimes convenient to introduce the complexification of
X, written 4., and defined as the set of formal sums

Xo=1{x; +ixy:x1, x5 € Q"},
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i being the imaginary unit. Addition and scalar multiplication in Zare done
in the obvious way. In this notation if x = x; + ix, € Z then Re x=x, and
Im x == x,. Note that d(%,) = d(Z), because if {x;, i € n} is a basis for ', so
that

= Spang{x;, i € n},
then

%, = Span.{x;, i € n},

and clearly x4, ..., x, are independent over C.

0.3 Subspaces

A (linear) subspace & of the linear space Z is a subset of 2" which is a linear
space under the operations of vector addition and scalar multiplication
inherited from Z: namely ¥ < Z (as a set) and for all x;, x, € & and ¢y,
¢, € F we have ¢, x; + ¢, x, € . The notation & = & (with & a script
capital) will henceforth mean that & is a subspace of 2. If x; € ' (i € k),
then Span{x;, i € k} is a subspace of Z. Geometrically, a subspace may be
pictured as a hyperplane passing through the origin of Z’; thus the vector
0 € & for every subspace & = Z. We have 0 < d(¥) < d(Z), withd(¥) =0
(resp. d(%)) if and only if & = 0 (resp. Z).

If #, ¥ < &, we define subspaces # + & = 4 and # n ¥ = Z accord-
ing to

R+ S ={r+s:reBsec)
RS ={x:xeR &xe}.

These definitions are extended in the obvious way to finite collections of
subspaces. It is well to note that Z + & is the span of # and & and may be
much larger than the set-theoretic union; the latter is generally not a
subspace. Also, as the zero subspace 0 « # and 0 = ., it is always true that
0c #n &+ &; that is, two subspaces of Z are never “disjoint” in the
set-theoretic sense.

The numerical addition and intersection of subspaces is summarized in
Exercise 0.6.

The family of all subspaces of Z is partially ordered by subspace inclusion
(<), and under the operations + and N is easily seen to form a lattice:
namely # + & is the smallest subspace containing both # and %, while
& & is the largest subspace contained in both # and .¥.

Inclusion relations among subspaces may be pictured by a lattice
diagram, in which the nodes represent subspaces, and a rising branch from 2
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to & means # < &. Thus, for arbitrary # and . < &, we have the diagram
shown below.
x

R+ &

AN

0
Let 2, ¥, 7 < & and suppose Z > %. Then
AL+ T)=RNS+RT (3.1a)
=S 4+RN T. (3.1b)

Equation (3.1) is the modular distributive rule; a lattice in which it holds is
called modular. It is important to realize that the distributive relation (3.1a)
need not hold for arbitrary choices of %, % and 7 for a counterexample
take three distinct one-dimensional subspaces of the two-dimensional plane
Zithen, RN (S +T)=RNX=RbURNS =R AT =0.On the
other hand, if for some #, ¥ and 7 , with no inclusion relation postulated, it
happens to be true that

RS +T)V=RANS+R AT, (3.2)
then it is also true that

SNR+T)=RNS+S T (3.3a)
and (by symmetry)

TR+ )=RNT +ST. (3.3b)

For the standard technique of proof of such identities, see Exercise 0.2.
Two subspaces #, & — & are (linearly) independent if # ~ % =0. A
family of k subspaces %, ..., %, is independent if
’@i & (.@1 + +'@i—l +¢@,‘+1 +- e +‘%k)=0

for all i € k. Note that an independent set of vectors cannot include the zero
vector, but any independent family of subspaces remains independent if we
adjoin one or more zero subspaces. The following statements are equivalent :

1. The family {#,, i € k} is independent.

(9?,- nYy @j)=0.

JFi

—
— o

'I\I)Mw ﬂMw

4

iii.

i=1
=4

J
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iv. Every vector x € #; + '+ + #, has a unique representation x = r; +
o4 withr, e ;.

If {#;, i € k} is an independent family of subspaces of £, the sum
ﬁ::ﬂl S ’%k
is called an internal direct sum, and may be written

R=R D @A

;ﬂi.

@~

1

]

In general the symbol @ indicates that the subspaces being added are
known, or claimed, to be ingependent. R
If #, & < & there exist # « # and ¥ < ., such that

R+ S =RDARNSL)DY. (3.4)

In general # and .7 are by no means unique (see Exercise 0.3). The decom-
position (3.4) does not have a natural extension to three or more subspaces.
If # and % are independent, clearly

d#® S)=d#)+d(¥);
and from (3.4) we have for arbitrary # and &,

AR + S)=d(R) +d(¥) — d(# A ).

Let 7, and 4, be arbitrary linear spaces over F. The external direct sum of
%, and Z,, written (temporarily) 2; @ 25, is the linear space of all ordered
pairs {(x;, x,): X; € 2}, x, € 25}, under componentwise addition and scalar
multiplication. Writing ~ for isomorphism (i.e. dimensional equality of
linear spaces), we have

2 = {(x1,0): x, € B} = 2 &,

and we shall identify 2, with its isomorphic image. The construction extends
to a finite collection of Z; in the obvious way. Evidently the definition makes
Z, and %, independent subspaces of 2; @2, and in this sense we have

9’,‘1 @ 3{‘2 = 1‘1 @ :'/I‘Z,
where @ denotes the internal direct sum defined earlier. Conversely, if we
start with independent subspaces %;, 4, of a parent space ', then clearly
1LOL~NT,

in a natural way. So, we shall usually not distinguish the two types of direct
sum, writing @ for either, when context makes it clear which is meant.
However, if 2; @ 4, is an external direct sum it may be convenient to write
x; @ x, instead of (x,, x,) for its elements. Similarly, if B: # - 2, ® 4, isa
map (see below) that sends u to B, u ® B, u, we may write B= B; @ B,.



