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INTRODUCTION

Invariants of links in 3-manifolds have been defined and studied classically through
algebraic topology. In the last decade ideas from singularity theory, quantum field
theory and statistical mechanics gave rise to the new theories of Vassiliev- and quan-
tum invariants. But the resulting combinatorial context and the topology of links are
not nicely combined.

The Conway polynomial Vk(z) of links K in S is an invariant, which is well
understood from both the classical and the modern viewpoint. It is combinatorially
characterized by Vynknot = 1 and the Conway relation

VK+ —Vk_ = ZVKO-

XX

Here

are three links, which differ only in a 3-ball in the indicated way.

While this characterization is simple it is extremely difficult to be used for an
existence proof [Kal]. This is quite in contrast to the Jones polynomial [Ka2], which
is the prominent example of the recent invariants.

In the early seventies John Conway suggested to generalize the Conway polynomial
for the case of oriented 3-manifolds M in the following way: Consider the quotient
of the free Z[z]-module on the set of isotopy classes of oriented links in M by the
submodule generated by all elements K — K_ —zKj. Obviously the resulting Conway
skein module is universal with respect to maps from the set of isotopy classes of
oriented links in M to Z[z]-modules satisfying the Conway relation. The Conway skein
module of S? is free of rank 1 and generated by the unknot (with the image of a link in
the module given by its Conway polynomial multiplied with the generator). Conway
skein modules of 3-dimensional handlebodies have been computed in [Tul] and [P]
using diagrammatic tools. But there is no topological understanding of the resulting
invariants like in S3. Conway skein modules are typical examples of combinatorial
universal constructions using link theory in M. But in order to achieve explicit results
concerning link theory, one needs to compute the modules and to understand the
resulting link invariants topologically.

Our approach to link theory is motivated by the problems above.

In order to carry over the topological idea of the Conway polynomial in S* to
the setting of oriented 3-manifolds, we propose to study universal constructions of
linking numbers in 3-manifolds. In fact, linking numbers are the main ingredient in
one of the standard existence proofs of the Conway polynomial in S® implying most
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of its topological properties. First one constructs the Seifert pairing of an oriented
connected surface embedded in S (see [Se], [Ka3] and [Kad]) by taking the linking
numbers, in S2, of cycles on the surface with cycles pushed into the complement of
the surface using a normal vector field. Then the Conway polynomial is defined by
a determinant construction on a matrix representative of the Seifert pairing. It only
depends on the equivalence class of the oriented link bounded by the surface. We will
accomplish a universal linking number map construction for oriented 3-manifolds, with
linking numbers crude enough to satisfy the standard properties. Then the Seifert
pairing approach will generalize following the classical line of arguments.

The first essential property of linking numbers is the homology resp. bordism
invariance. Let M be an oriented 3-manifold. Consider link maps (fi, f2) with f; :
Vi — M continuous maps of oriented compact closed 1-manifolds, : = 1,2, and
fi(Vi) N0 fo(Vz) = 0. The situation requires to study the bordism relation generated
by oriented bordisms of f in the complement of f; in M and vice versa. Let I(M)
denote the resulting link bordism set. The structure of Z(M) is easy to describe by
the homology of M: For a € Hy(M) and b € Hy(M) let ab € Z denote the oriented
intersection number. Let v: Z(M) — H,(M) & H,(M) be defined by the images of
the fundamental classes of V; by (f;). for ¢ =1, 2.

Theorem 1. Let M be a compact connected oriented 3-manifold. Then for all ay,a, €
Hy(M) there is a 1-1 correspondence between t='(ay,a;) and the group Z/A(ay,a,),
where A(ay,az) is the subgroup generated by all a;b € Z fori = 1,2 and all b € Hy(M).

The link bordism set of the 3-ball is an infinite cyclic group under disjoint separated
union, generated by the oriented Hopf link. This group acts transitively on the sets
t™!(ay, az) and the actions induce the bijection of theorem 1. This structure will be
the main tool in further computations.

It follows that link bordism in those oriented 3-manifolds, where the intersection
numbers of closed oriented surfaces with closed oriented curves always vanish, is dif-
ferent from the general case. We will show that intersection numbers vanish if and
only if M embeds in a rational homology 3-sphere if and only if 2b,(M) = b,(OM),
where b, is the first Betti-number. We call compact connected oriented 3-manifolds
with this property Betti-trivial. Note that 2b,(M) > b;(0M) holds for all compact
oriented 3-manifolds.

Next we let a linking number map for a 3-manifold be a map u from Z(M) to
an abelian group A with involution satisyfing (i) u[fi U fi, f2] = u[f1, f2] + u[fi, f2]
and (ii) equivariance with respect to (f1, f2) — (f2, f1) and the involution on A. Here
(fiUfi, f2) is an arbitrary link map and [, ] is the equivalence class in Z(M). There is
a universal linking number map Z(M) — Ay for each oriented 3-manifold M, which
is defined and constructed in standard terms. Let Aps be the universal group of the
3-manifold. We will prove the following result:

Theorem 2. The universal group of a compact connected oriented 3-manifold is iso-
morphic to Hy(M)® H,(M) if and only if M is not Betti-trivial. If M is Betti-trivial
then there is the short eract sequence:

0 — Z 25 Ay —— H(M)® Hy(M) — 0,

where ppr(1) is the image of the oriented Hopf link (see page 38) in a 3-ball in M
under the universal map.
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Linking number maps to abelian groups can be used to define bilinear Seifert
pairings of compact oriented surfaces like in S2. In order to derive invariants, which
only depend on the “bordism class” of a given surface, we need determinants. This
suggests to consider linking number maps with values in commutative rings and the
definition of ring lk-map. This is a linking number map to an abelian group R as
before, where R is a commutative ring with involution and identity, and moreover the
Hopf link in M maps to the identity of the ring.

For M not Betti-trivial, no ring lk-maps exist. If M is Betti-trivial then a universal
ring lk-map with values in a universal ring Rps of the manifold is defined. This ring
can be computed from the homology of the manifold. The computation is non-trivial
and involves a detailed analysis of the splitting classes of short exact sequences defined
by the homology of knot exteriors in M.

Theorem 3. The universal ring of a Betti-trivial manifold is isomorphic to the ring
Z[{][zi;] in r? indeterminates z;;, where k is the least common multiple of the orders
of non-trivial elements of the torsion subgroup of Hy(M) and r is the rank of Hy(M).

~

For M a rational homology 3-sphere, Ry = Z[};] C Q and the universal map
I(M) — Ry is the standard linking number map in Q, which is defined using that
Hy(M) is torsion. In the general case of Betti-trivial manifolds, embeddings in rational
homology 3-spheres define ring lk-maps to Q. We will show that these determine the
universal map if and only if r < 1.

Often, it is decidable now when ring lk-maps to specific rings exist. An important
special case is the following.

Corollary 1. Let M be Betti-trivial and let k be like in Theorem 3. Then there ezists
a ring lk-map to Z,, p € Z, if and only if p and k are coprime. In particular there
exists a ring lk-map to Z if and only if k = 1, equivalently H;(M) is torsion-free.

Finally, in order to apply our theory to define link invariants, we need to study
the relation between links and oriented bounding surfaces. This is non-trivial in
the situation of 3-manifolds. A study has been begun by R. Mandelbaum and B.
Moishezon in [MM]. Their results are as follows: (i) An oriented link bounds an
oriented surface if and only if its homology class in H;(M) is trivial, (ii) there is
transitive action of H,(M) on the set of relative homology classes surfaces, which
bound a fixed link. We will consider pairs (K, 0), called Seifert structures, where K is
a link in M and @ is the relative homology class of an oriented bounding surface of K
in the exterior of K. Equivalence of Seifert structures is defined by ambient isotopy
in M. Then we will study the relation between equivalence of Seifert structures
and links. We will show that each invariant of Seifert structures induces a natural
invariant of oriented links with trivial homology class in M. Seifert structures very
much behave like usual links. In particular, we will define a notion of skein triples

(K4+,04), (K-,0-),(Ko,0) of Seifert structures in M.

Theorem 4. Let M be a Betti-trivial manifold. Then, for each equivalence class of
Seifert structures (K,0) in M, there is defined the Conway polynomial

V(k) € Rumlz]
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satisfying the relation
Viks0:) — Vik_o-) = 2V (Ko.00)

for skein triples of Seifert structures in M.

The Conway polynomial for Seifert structures induces the Conway polynomial for
oriented links in M with values in a set of equivalence classes of maps Hy(M) —
Rum[z]. Equivalence of maps here is defined by the translation action of Hy(M) in
the argument. The Conway polynomial of Seifert structures has many properties
known from S3. So, if a Seifert structure contains a surface with more than one non-
closed component then its Conway polynomial does vanish. Moreover it is possible
to determine which matrices are realized as Seifert matrices of Seifert structures,
thus deriving conclusions on the set of polynomials which are Conway polynomials of
Seifert structures in M.

We like to point out that all the constructions above are functorial with respect
to oriented embeddings of oriented 3-manifolds and intrinsic, i.e. without appealing
to embeddings in rational homology 3-spheres.

The topology of links in Betti-trivial manifolds is in many respects similar to that
in S3. We will discuss the link characteristic x(K) of oriented links K in Betti-trivial
3-manifolds, which is defined by the maximal Euler characteristic of oriented surfaces
without closed components bounding K. The link characteristic is comparable with
the Thurston norm and the deep results of D. Gabai are available. These have previ-
ously been applied by M. Scharlemann and A. Thompson in the study of link genus,
Conway moves and band operations in S3. We prove a generalization of their result
[ST] in the following form: Consider an oriented ball in M, which intersects the link
in two parallel unlinked strings with opposite orientation, thus spanning a band. Then
change the band by cutting and twisting:

= X

oriented ball K

— XX XXX
AR AKARANK

twisted links K

This defines the sequence of links K}, where b runs through twists of the given band.



INTRODUCTION xi

The link K is defined by cutting the band.

Theorem 5. Suppose M is irreducible Betti-trivial and with boundary components
toral or two-spheres. Let Ky, K be the links, defined by twisting and cutting a link in
a ball in M. Then either x(Ky) does not depend on the twist and is < x(K) —1, or
there is a unique twist ¢ with x(K.) > x(K3) = x(K) — 1 for all twists b # c.

A corollary is that if K, K_, Ko are the three links in the Conway relation then
two of x(K4), x(K-) and x(Kp)—1 are equal and not larger than the third. Theorem
5, combined with a duality principle for bands, provides many non-triviality results
for links in Betti-trivial manifolds.

The plan of these notes is as follows: We will start with a general discussion
of link map bordism in manifolds and prove a classification result in a range of di-
mensions. This is mainly to show that the basis of our discussion is not specifically
3-dimensional. Generalizations of many concepts to high dimensional link theory
are evident. In chapter 2 we discuss bordism relations in 3-manifolds and provide
the classification of oriented resp. framed and embedded resp. singular bordism of r-
component 1-dimensional links in compact connected oriented 3-manifolds. Chapter
3 contains the fundamental concepts of the theory including the computation of the
universal rings of Betti-trivial 3-manifolds. In chapter 4 we set up the framework for
invariants of oriented surfaces and determine the relation with link isotopy. Chapter
5 shows how, following the classical line of arguments, Seifert pairings defined by ring
lk-maps give rise to polynomial invariants of links in 3-manifolds. In chapter 6, the
characteristics of surfaces and links in 3-manifolds are defined in general. Then the
discussion is specialized to Betti-trivial manifolds. We prove theorem 5 and discuss
applications including the generalized band sum problem. Finally in chapter 7 we
study the problem of Betti-trivial submanifolds of arbitrary connected compact ori-
ented 3-manifolds. A process of cutting along oriented surfaces until the complement
becomes Betti-trivial is considered. This gives rise to natural complexity invariants
of oriented 3-manifolds, which are not Betti-trivial.

The appendix contains definitions and results on inner homology and inner Betti-
numbers, important computational tools in the study of manifolds with boundary.
Moreover, we have included a comprehensive treatment of the homology of link exte-
riors in 3-manifolds. General proofs of these results, which are indispensable for the
understanding of the theory, do not seem available in the literature.

The chapters 1-3 are essentially independent with only superficial references. In
particular the main result of chapter 1 is not applied in the discussion of bordism in
3-manifolds in chapter 2. The notions of chapter 4 are needed both in chapters 5 and
6. Chapter 7 is independent of the other parts of the notes.

We like to thank Michael Heusener, Ulrich Koschorke, Jerry Levine, Vladimir
Nezhinskii and Oleg Viro for helpful and encouraging discussions. Furthermore we
thank Ronnie Lee for bringing the work of Mandelbaum and Moishezon [MM] to our
attention, and Marty Scharlemann for pointing out to us that theorem 5 for S? is
implicitly contained in [ST].
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Conventions:

Throughout we work in the smooth category. M will be a smooth manifold, in
general compact and connected. M will denote the boundary and Int(M) = M —0M
the interior of a manifold M. For a submanifold resp. complex V C M we let Ny
denote a tubular neighbourhood resp. regular neighbourhood of V in M. We let
My = M — Int Ny denote the exterior. For X a space or set, | X| denotes the number
of components or elements of X. For X,Y (based) spaces, [X,Y] is the set of (based)
homotopy classes of (based) continuous maps from X to Y. = means diffeomorphism
or isomorphism depending on the context. PD is Poincare duality.
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Chapter 1

Link bordism in manifolds

We define bordism sets of link maps from manifolds (with structures on the tangent
bundles) in a fixed manifold. We discuss properties of the bordism sets and the general
structure. In a certain range of dimension, a classification is given by the bordism
classes of the components and pairwise intersections. The main technical result is
(1.3.4) with the application to classification given in (1.4).

1.1 Definitions and homotopy interpretation

We let G = 1,50,0 denote the framed, oriented or unoriented situation. Let e*
denote the trivial k-dimensional bundle over any space.

n+2 _,

A G-manifold M is a manifold with a (homotopy class of) stable framing €
TM @ €? for G = 1, and is oriented for G = SO. The boundary of a G-manifold V
is a G-manifold using the inner normal isomorphism TV |0V = T'(0V) @ €. For each
G-manifold V let (—V) denote the G-manifold with the negative structure, which
is defined by stabilization using a reflection. A diffeomorphism of G-manifolds is a
diffeomorphism g : V' — V' such that the derivative of g identifies the stable framings
resp. orientations. Diffeomorphism of G-manifolds is denoted 2.

Let N C M be a codimension-0 submanifold. Then a map f : V — M with V
a manifold is N—proper if f(OV) C N. Note that, by using collars on 9V, N and
OM, each proper map is homotopic through proper maps to a map with f~(dM) =
fY(IntN) = V. We call such maps strictly N—proper.

1.1.1 Definition. Let M be a manifold and let N C dM be a codimension-0
submanifold.

(i) A G-map in (M,N) is an N—proper continuous map f : V — M with V a
G-manifold.

(ii) The boundary of a G-map in (M, N) is the G-map in N = (N, () defined by the
restriction to the boundary.

(iii) A diffeomorphism of G-maps f : V — M and f' : V' — M in (M,N) is a
diffeomorphism g : V/ — V of G-manifolds such that f' = fog.

Next let p = (p1,...,pr) be a sequence of non-negative integer numbers. For p a
sequence and k € Z let p + k denote the sequence (p; + k,... ,pr + k).
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1.1.2 Definition. A G-link map in (M, N) of type p is a sequence f; : Vi = M
of G-maps in (M, N) with dim(V;) = p;, 1 <@ < r, such that f(V;) N f(V;) = 0 for
1<i<j<r. Webriefly write f : V = M with V=WV, U...UV,, f|V; is the i-th
part of f.

Note that the boundary of a G-link map in (M, N) of type p is a G-link map in
N of type (p — 1). In the following definition we smooth corners whenever necessary.

1.1.3 Definition. A bordism between G-link maps f : V —- M and f': V' - M
of type p in (M, N) is a G-link map F : W — M x I of type (p + 1) in the pair
(M x I,(M x 0I)U N x I) such that 0W = (-V)U Z U V' with the union along
the boundaries and dZ = (—9dV) U dV'. Moreover F|V = f x 0 and F|V' = f' x 1
(identified using the diffeomorphism), and F|Z : Z — N x I is a G-link map in
(N x I,N x oI).

Let £,(M,N;G) denote the bordism set of G-link maps of type p in (M, N).

Restriction defines the boundary map

8: £,(M,N;G) = £,_1(N;G).

1.1.4 Example. The set £,(M;G) := £,(M,0;G) is the bordism set of G-link

maps in M (defined with closed G-manifolds and bordism is in usual sense).

We briefly discuss the Pontryagin-Thom construction to indicate how the geomet-
ric definitions fit into the framework of homotopy theory.

Let MG(n) denote Thom space of the universal bundle over the classifying space
BG(n), where G(n) = SO(n), O(n) for G = SO,0, and MG(n) = S™ is the Thom
space of the trivial n-bundle over a point for G = 1. Let [, ] denote based homotopy
classes of based maps and let 2 be the loop functor.

If p € Z then (1.1.3) reduces to the definition of the usual bordism group of G-
maps (singular G-manifolds) in (M, N). In [A] and [Sw] the generalization Q% (X,Y)
to pairs of complexes is discussed. In particular the Pontryagin-Thom construction
defines an isomorphism:

Q8(X,Y) - mpk(X/Y A MG(k))

for large k. It is known that the bordism groups of G-maps in (X,Y’) form a general-
ized homology theory. For a compact G-manifold M , the Thom-Atiyah isomorphism
holds

Tprk(M/OM A MG(K)) = [M/OM,Q* MG(k + m — p)],

(compare [C], (13.4)), where QF denotes k-fold loop space. The homotopy group on
the right hand side describes via Pontryagin-Thom construction the bordism group
of continuous maps f : V — M with a stable framing TV = f*(TM) resp. an
isomorphism of the underlying orientation bundles. The generalization to proper
maps in (M, N) is obvious. This is what we call a normal G-map in (M,N) and



