PEARSON

l ©00®0e0

RN HPLAR S

(2) Randal E. Bryant David R. O'Hallaron =
FRE-1gEXE

%
i COMPUTER SYSTEMS
% A Programmer’s Perspective
2
iR
|
#o# T b AR 4

Bryant - O'Hallaron

China Machine Press

NSRS

(3E3CHR - 562k)

vrrteeler %,Mg/%ﬂ

A Programmer’ s Perspective (Second Edition)

s
COMPUTER SYSTEMS

/A Programmer’s Perspéctive

Bryant - O’Hallaron

Randal E. Bryant
(%) David R. O'Hallaron

English reprint edition copyright © 2011 by Pearson Education Asia Limited and China Machine Press.
Original English language title: Computer Systems: A Programmer’s Perspective, Second Edition (ISBN
978-0-13-713336-9) by Randal E. Bryant and David R. O’Hallaron, Copyright © 2011, 2003.

All rights reserved.
Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Prentice Hall.
For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR

and Macau SAR).

#4595 BEN R iy Pearson Education Asia Ltd. ##AUHLEK Tl HAREE A5 tH AR . A 20 HH RS 5 10 ¥ 7T
AELEM G REHSRIPEABNE.

R T AREFEEAN (REFEPEFE, ®BIFITEREMFEGEHEX) HERT.

A3 HGA Pearson Education (¥FtE#E HRER) BB hir%E, THREEAFHE.

R TR thiRT 8 B
AR, 'R
FEZERE AETRABRMESH

AP ENEICS : BEF : 01-2010-6351

BEHER®RE (CIP) HiiE

AR EN RS (FESOR - 98 2R/ () i B4E (Bryant, R.BE.), (3€) RWHi{E (O’Hallaron,
D.R.) . —dtx : PLB Tk HikRdt, 2011.1

(2 B R RRAS 2)

F54 A3 . Computer Systems: A Programmer’s Perspective, Second Edition

ISBN 978-7-111-32631-1
Lig- ILOfi- K- ILEIFRL IV.TP30
Hh A B A5 58 CIP A%+ (2010) 45 230916 5

WA Tl AR R (e X H 5 FEAR 22 5 WBB(4RED 100037)
TR . £FEE

AL EN 5578 BR 2> =1 EN Al

2011 4= 1 ASE 1 RREE 1 kENRI

186mm x 240mm + 67.5 E[lgk

FrdE352 . ISBN 978-7-111-32631-1

EH : 128.00 7T

JUAE, anA G, B, BT, mAMERTERIAH
AR . (010) 88378991, 88361066

Mt53hik . (010) 68326294, 88379649, 68995259
PRk, (010) 88379604

BE1EH . hzjsi@hzbook.com

N Pl R

(BE3ChR - 52k)

ﬂ/??/&ééfé/ %M‘gmﬁ

A Programmer’ s Perspective (second Edition)

COMPUTER Svsm

A Programmer's Perspéctive

Bryant - O'Hallaron

Randal E. Bryant
(%) David R. O'Hallaron %

English reprint edition copyright © 2011 by Pearson Education Asia Limited and China Machine Press.

Original English language title: Computer Systems: A Programmer’s Perspective, Second Edition (ISBN
978-0-13-713336-9) by Randal E. Bryant and David R. O’Hallaron, Copyright © 2011, 2003.

All rights reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Prentice Hall.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR
and Macau SAR).

AASFCFZE R B Pearson Education Asia Ltd. #AUHLAK Lol HARHE IR AR . K& HRRE BHE T,
ARUEMARE ISP EZEBNE.

SR T ARIEFIESRN (FREFEEE. BIFNTERERTEEBHE) HERT.

A A5H ENEH Pearson Education (BrAEHE HIRER) BOEMithin%, TrEEREHE,

H R TT BT PhFRES 4 R
IR E, BB R
FHEEME ARTREAEMESR

ABREWNEIZS : BF : 01-2010-6351
EBER®mE (CIP) #iE

TRABMIHEHLAS (FOR - % 2 50)/(%) HHE4 (Bryant, R.E), (%) S0AH{E (0°Hallaron,
D.R.) . —dbx : YL Tk HiR#:, 2011.1

(2R RRA5 %)

P43 : Computer Systems: A Programmer’s Perspective, Second Edition

ISBN 978-7-111-32631-1
L IL O OK- ILHEHIFEL IV.TP30
A B 51 CIP Bdi g (2010) 28 230916 5

ML Tl AR AL (lesthPEs K E A RS 22 S BB 100037)
it . THAE

AL FFEIREN 5575 PR 2 B EN R

2011 48 1 A8 1 RRES 1 RENRI

186mm x 240mm -« 67.5 E[I3k

FrifE452 ; ISBN 978-7-111-32631-1

EHr : 128.00 5T

JUMAAS, BRI, BTG, BTT, mAHRITH R
MRk (010) 88378991, 88361066

WL (010) 68326294, 88379649, 68995259
Bk (010) 88379604

e fe

%125 . hzjsi@hzbook.com

T 2 ii Computer Systems
=

A Programmer’s Perspective, 2E

ABHFEELERITENAER. HHEV IR, URREEETEI T EIRKN N

YEMRERS S i EHREFHIA

AT B R MBREITA T BV RGN AR S, H 1 R 7R 3 LA A 2 AN] 55 5K 7E 7 Hh 5 i

PR IEREE . MREASC AR . KRR BERBAM LS 6 A BRER, PR
LHFEHREREURNM, GFEBERE. WIFSMMEED. MALRMALAS R G AALKREH,
YRR AR R RS A REM I REE HEFHERF. SR, FI-DIHTEIARGERM LM
eft 2, BEIJMAMHME-NHTEIRZNREFH L ES BT, T REREFE S RERE
LI AL, AHR—AREMHER A .

Bk

AFH 12 ZHM, BEERTBEVIREZOERE.

cF 1% HEAMALRH. X —E@EIHF “hello, world” XN ERFEFHEME, NA
THEALR G E B SR A

cF2F%F: FAMATARLE. BITRTHEVIMERZE, EAHRTINERFREA MW
) To 452 BB — 3 I MD (two’s complement) R B4R, IRATE BEFE B U FE R
B, PARHBEEEN T —NMAENFR, HaTRmnEmEE. RITHESRIRRz T,
AR R 45 I F K BE GRS M BERTE Bl . AT AR S M SHF 2 RILX B LA
MR, AEARABERZENHFRF . XSREFREEREFHTHD (ATHEFRMIRR
KD BN ERAMEERATRE AR H—FHHE, —#HFIRMINERZEHEREGI R,
H i, 4iFes] ARE it — N EEREEMN—RIWBAAME. RITH CIEFHAL
FEER VAN R EHEMMN A . RATABA A T IEEE FRfERZ S &K : — 2
WTHERFBREUE, —RBFZAISEREBEE.

c E3% AFNBLAEAT. RIMBOLE WM FIEEH C 44 AT 1A32 Fl x86-64 1L 4w15E
Fo BITEBAARRERISEH, kM. B XIER, ERPHERESEN. BIE
PR IAT, GRS E. FERERRAMSHEE. RITTRARBIESEW (ng
. BeA C(union) FIEL) B4BECFIVE R K. FATE AR FF VLS R EE T1E A8
B, RIEMEWHRBLZERE, fl, ZhXiEH, ARBEMFRERFR. MESARERs
AT DA SRR B 988 X ol B) 5 T

cFA4F . AEBKRALH., X—FHREANASFZHETE, HERXEITEITHE
G @ (datapath) HFHEF|—ERMIT IA32 $EL5ER—IFRA “Y86” WML &£, 4

HAREHIE

XEE ML, FmiE KRS IR P T R FARBYE, (5085 ERE AR EA
TUREF T MRS hERXFERNES, EEEERBHEARRIISTZERARKIEN.
TN, fER LS, XEMNM LR SEF AR EATE S, HREILFERTTFZ
WAL RN & AR I B F R AT 2k, BT AR MR EE, AR THFRAYTERE,
MR THFARPRELE, BEEEFEARE, XAAFENE, BN EHASEE AR TR .

L, E2KEBAX#ENED T, REMNHHEI LA RRE, XEUAFHFRAE
Y], XA HRENLEE F RS RILE, Pk s mMEP L EMWRIRERTRIE LD
HEERE, ARERGEEARRMNERENIRT, EEFXREEARELTENLRZRREDN
JLHERREME RS MEM AT LERESE 2L, FHit, SI#H—#EIMEFITHEILEH
FHBETTRIEFTF LR RESRRAHEDER, L5 0. BREEMHER K
KEWBHEZE,

PLBE ol i AR R A R R B EINT “HREABEFERS . B 1998 F£H445, HMBK T
VEE pAUBAE T, BIFEIMETZHM L. £ ZEMAWE S, A5 Pearson, McGraw-
Hill, Elsevier, MIT, John Wiley & Sons, Cengage ZEt# R ELHRAFENY T RS EX
%, MMTELA A% T F 44 B & B Andrew S. Tanenbaum, Bjarne Stroustrup, Brain W.
Kernighan, Dennis Ritchie, Jim Gray, Afred V. Aho, John E. Hopcroft, Jeffrey D. Ullman,
Abraham Silberschatz, William Stallings, Donald E. Knuth, John L. Hennessy, Larry L.
Peterson KM AR —H L HIESR, UL “HHEHBHENE" AHSREKR, #HiRE¥E2]. R
RE. KREASENEE, WEFER T XENBHSMEA.,

“UREVLEFEAS" R TIERR TERNIMENR DR, BERNNERA RS THE
RIS T, EAEFS A T BRI E R TR MR B ESE Al Y ER A E
HIEE, AN ERAKLBHPIERER. £4, “HEIBZEAS” C2HR TEMRE N &
F, XERBAEREPRLT RIFVAB, HEFLERRAAEXREMTISEEE, KU
hR “2HRRRAS T 1E A ik ok fE A bk ok bk £ S HERUIE BUF AR TR AL

BRHITERE . BAIEM . —RAFEE . MEER. FANRE, XERFRERMYE
BAETHRENRIE. MEHEIRZSHEART LFBHE IR AN EEMEM KRN REEL,
B S E SN R B T RABL AR PA— DI B, R BRERERE, MR
BB IERBNTERX — LR BRI EZER), L3 A B0 2 h ik & 3 30100 TR H
BALESES THRIE, BRAMBBRRGEAT -

EEM L . www.hzbook.com

B, FHR{4 . hzjsj@hzbook.com

EXEREIE . (010) 88379604

AU X TRREGTEdA 1 S
AR 4575 « 100037 X LGRS

i3

BETE - 5
25 op Qb R AR R T A B 48 R A —FR AR S HCL Y 1] A8 {4 fi iR 1B = Rk ik Y. A HCL 5
AR 5 BE % 4 130 AN S 4 B A TR LB AL B8 b, BT AR X 4B T A2 A Verilog 1
®, BEAAM (synthesis) F|SLFRA] POSITHIREM L%

cFS5F: AEANE. EX—EE, RONMATHSEREABEENOR, EEBEH

LR T 5O G g i 2% BE AL BUE A P USRI S C .

cF 6% AMBEKGMH. MYABRFRRE FHESAZETEIAZTRERTLY

Wz —. ROIRRRRBEIFRF S (RAM) FUEF#ES (ROMD, AR#E
FAESER VTR MALNE. ROHERXEFH SR IATBEEZREW T,
PR 7] JR FR R AT (5 X SR R S5 H A P RE RN AT — AR A LA X e 2 e
Bikfe. R, MR ESRAREUN— “TFEMEas 7, I RRE R, R
R R &E, ?ﬁﬂ‘]r'n]ﬁ%l@i&ﬁﬂﬁﬁﬁ&%ﬁf?%ﬂil‘ﬂ%%ﬁﬁﬁﬁ"fl‘ﬁ]}%%ﬁﬁ%ﬁ
=N AR PR RE .

« F7F B, ARFRBSHSISHER, SEOMESE A EENR (relocatable) FIT[AT

W EFRSC . FPSENT. EREAL (relocation). #ASE. HZHRE, UkSMETXIINH.

* F8F : WA, EABHXNELS, RIEINFREZHER (L, B TIERS

ARV ASMO I RIR AL M— B, TR, RNAHEET RS
B BRI REERROGT, WREREGERERMSW, 2 E#EY LT XU, FhH
T Unix {55545 [EMEFIR R, 2 CiESPHIIRIEN A IEA# Bk (nonlocal jump).
9% : EMAME. RITHARBIUGFHS RERASZIREN BRI TEM AR EREE
HH T . RNELLEE TR 2AAFRN IR HREE BEHA — TR TR,
RESL R LT, SO G B AT AR E SV T — LB AR A 28 Y) .
FeAl, IRATTHE THEESECERIE, 3B Unix B malloc fll free #4E.

* % 10% . RAAVO. FATViE Unix VO KEAMRE, BIANSCHEMBERAF. AR M

FZMH, VO BEEMLWA TR, B8 WEVhE SCHERTEdE. BITEF % T — Mt
HH R IX) VO G, B] PAIE#ALIE—FFR A short counts FZT 74T, kR R H i
B —For s ARG . AR C WAnHE /O B, PARES Unix /O B X R, EARIMR
VO WmMRYE, XERBUEFEZAESMERE.

cF 1% AHAZ. MEENS, MERIEFEABHN VO &, FFESRINEIEXHEY

FIARS, HLinsEfE. (55, FWIHF (byte order). FEiERsMLE FIBISIEMERATE, BELE
—i. MERFENT—ENFT—HE, BHTIMREAGRHLTX. 2FHELE
M 28 I AR) — DR/ R SY, (HEEE BB R S — > Web R%588. BATEWER T TRIA N
BREFRENE I - RS, AVBI T —AMEF R %) Internet BN 5, H HBEE
W BT (socket) 23R4S Internet 2 P MRS 2% BJE, HATNMEM AL
W HTTP, HHE T —MEERAENRR (iterative) Web 4525

©F 2% St K%AZ. X —FDA Internet IR F BRI HBINGA T H KRR ROTLEITET

=R S AR EAH (HER. VO ZHEREARAMER), HHEBRNMAEN%R
A& & Internet R 588, BRIV THP. VESBRERLIHURSE. KELLSMTEA

6 - FIETE

(reentrancy). &£ ARFEYERIEATEN .. RATLEVA T LBRIMERFEHITE, K
FRREN AR FF SR HATIE, SRR EL AL B L REPITIR R

KIEFTIEAE

AFBEEE 1R 2003 FFH . HEENTENBEARKRBINEERE, XABHABELERZREE
HR4EF. FSCUERH Intel x86 HALAS FiEfT2 Unix #BIERSK, M ERA CIESHE, 2 MW
HE LS FLZREMASG. BHRARMEEROENL, UERBRESBITHRXLENENZR, #H1E
BRI T KRENB K.

TR B A — S T A A B

cE2F: FAMATARE. BEFEMFEMNARMSARFELZHNE I EMREEL, &

A EFEX IS NEEMSE. FIF SR RESH AR T MgEHER. Bifd

T—Y¥hAFHENEREERNGE &N E TR

cE3F . AFUNBEALT. RITHAENERIEEY BRI T 115 x86-64, 512K x86

WY RE|T 64 fMFK. M TEHRAR GCC =AM AME . 7IMNEHR T X%

X H iR, EMGESER, RITAH THEARMTE SIS, BNHT L4HmFH

R E MO S E RN R, B — AR . 54, B/ AW SRR T T

E—A CIEFREF i A x86 L4 A5.

cF 4% REBARALH. BIFEMAR U TRMOAERRIT PN RE X AR, £

RIS, FATHE TR ITAY Verilog #ABLE, HEIRNTAIRTTREW & B EI]

BATHIRE L.

« 5% LA A MR, RO RHMSE T XL F A B2 A2 T A Tid, B4R 7 —H

BB, REBETREFHWEIERERRFWEERSITETFHERE. EMESTEE,

IR T CIEFHF R REDE FI FH 8 F 1) x86 AL PERF 424t SIMD (HIE4 T, LHIE

) RL k.

cFO6F: AMBEXGM., RIEMTESERANNE, BEHTRINNFR, F2ET

Intel Core i7 AbFEBR TR B R IREEH .

cFTE . BE., RENTIK.

cF 8% BEAEFA. AT T X FHEER MM A —SEARE I EARSHTHE, B

AR E .

cFOF: EMAMB. RIEH THEHERRZERZFITS, KA T 64 i Intel Core i7 4bFHZF

FBIRR . RATEEF T malloc MEHIRBISEEL, 2 BEAETE 32 (L HAELE 64 (1 3R55

AT

% 10% . A4A 0. AEHEBLARK.

cF 11 % R 4HAE. AEHNELAK.

c F12F AR GAR. RO T XRTHEE—RENGHE, BB TRFE R NAF 4L

BRI ITHEEERETES IS D TE R,

BeAh, BAVERIGIFE SR TRE 4B K ELEL.

Computer Systems

A Programmer’s Perspective, 2E

This book (CS:APP) is for computer scientists, computer engineers, and others
who want to be able to write better programs by learning what is going on “under
the hood” of a computer system.

Our aim is to explain the enduring concepts underlying all computer systems,
and to show you the concrete ways that these ideas affect the correctness, perfor-
mance, and utility of your application programs. Other systems books are written
from a builder’s perspective, describing how to implement the hardware or the sys-
tems software, including the operating system, compiler, and network interface.
This book is written from a programmer’s perspective, describing how application
programmers can use their knowledge of a system to write better programs. Of
course, learning what a system is supposed to do provides a good first step in learn-
ing how to build one, and so this book also serves as a valuable introduction to
those who go on to implement systems hardware and software.

If you study and learn the concepts in this book, you will be on your way to
becoming the rare “power programmer” who knows how things work and how
to fix them when they break. Our aim is to present the fundamental concepts in
ways that you will find useful right away. You will also be prepared to delve deeper,
studying such topics as compilers, computer architecture, operating systems, em-
bedded systems, and networking.

Assumptions about the Reader’s Background

The presentation of machine code in the book is based on two related formats
supported by Intel and its competitors, colloquially known as “x86.” TA32 is the
machine code that has become the de facto standard for a wide range of systems.
x86-64 is an extension of IA32 to enable programs to operate on larger data and to
reference a wider range of memory addresses. Since x86-64 systems are able to run
IA32 code, both of these forms of machine code will see widespread use for the
foreseeable future. We consider how these machines execute C programs on Unix
or Unix-like (such as Linux) operating systems. (To simplify our presentation,
we will use the term “Unix” as an umbrella term for systems having Unix as
their heritage, including Solaris, Mac OS, and Linux.) The text contains numerous
programming examples that have been compiled and run on Linux systems. We
assume that you have access to such a machine and are able to log in and do simple
things such as changing directories.

If your computer runs Microsoft Windows, you have two choices. First, you
can get a copy of Linux (www.ubuntu. com) and install it as a “dual boot” option,
so that your machine can run either operating system. Alternatively, by installing
a copy of the Cygwin tools (www. cygwin. com), you can run a Unix-like shell under

| Preface |

8 -

Preface’

Windows and have an environment very close to that provided by Linux. Not all
features of Linux are available under Cygwin, however.

We also assume that you have some familiarity with C or C++. If your only
prior experience is with Java, the transition will require more effort on your part,
but we will help you. Java and C share similar syntax and control statements.
However, there are aspects of C, particularly pointers, explicit dynamic memory
allocation, and formatted I/O, that do not exist in Java. Fortunately, C is a small
language, and it is clearly and beautifully described in the classic “K&R” text
by Brian Kernighan and Dennis Ritchie [58]. Regardless of your programming
background, consider K&R an essential part of your personal systems library.

Several of the early chapters in the book explore the interactions between
C programs and their machine-language counterparts. The machine-language
examples were all generated by the GNU Gcc compiler running on IA32 and x86-
64 processors. We do not assume any prior experience with hardware, machine
language, or assembly-language programming.

New to C? Advice on the C programming language

To help readers whose background in C programming is weak (or nonexistent), we have also included
these special notes to highlight features that are especially important in C. We assume you are familiar
with C++ or Java.

How to Read the Book

Learning how computer systems work from a programmer’s perspective is great
fun, mainly because you can do it actively. Whenever you learn something new,
you can try it out right away and see the result first hand. In fact, we believe that
the only way to learn systems is to do systems, either working concrete problems
or writing and running programs on real systems.

This theme pervades the entire book. When a new concept is introduced, it
is followed in the text by one or more practice problems that you should work
immediately to test your understanding. Solutions to the practice problems are
at the end of each chapter. As you read, try to solve each problem on your own,
and then check the solution to make sure you are on the right track. Each chapter
is followed by a set of homework problems of varying difficulty. Your instructor
has the solutions to the homework problems in an Instructor’s Manual. For each
homework problem, we show a rating of the amount of effort we feel it will require:

@ Should require just a few minutes. Little or no programming required.

€& Might require up to 20 minutes. Often involves writing and testing some code.
Many of these are derived from problems we have given on exams.

€4 ¢ Requires a significant effort, perhaps 1-2 hours. Generally involves writing
and testing a significant amount of code.

€664 A lab assignment, requiring up to 10 hours of effort.

code/intro/hello.c

1 #include <stdio.h>

2

3 int main()

4 o

5 printf ("hello, world\n");
6 return O;

7}

code/intro/hello.c

Figure 1 A typical code example.

Each code example in the text was formatted directly, without any manual
intervention, from a C program compiled with Gce and tested on a Linux system.
Of course, your system may have a different version of Gcc, or a different compiler
altogether, and so your compiler might generate different machine code, but the
overall behavior should be the same. All of the source code is available from the
CS:APP Web page at csapp.cs. cmu. edu. In the text, the file names of the source
programs are documented in horizontal bars that surround the formatted code.
For example, the program in Figure 1 can be found in the file hello. c in directory
code/intro/. We encourage you to try running the example programs on your
system as you encounter them.

To avoid having a book that is overwhelming, both in bulk and in content,
we have created a number of Web asides containing material that supplements
the main presentation of the book. These asides are referenced within the book
with a notation of the form CHAP:TOP, where CHAP is a short encoding of the
chapter subject, and TOP is short code for the topic that is covered. For example,
Web Aside DATA:BOOL contains supplementary material on Boolean algebra for
the presentation on data representations in Chapter 2, while Web Aside ARCH:VLOG
contains material describing processor designs using the Verilog hardware descrip-
tion language, supplementing the presentation of processor design in Chapter 4.
All of these Web asides are available from the CS:APP Web page.

Aside What is an aside?

Preface - 9

You will encounter asides of this form throughout the text. Asides are parenthetical remarks that give
you some additional insight into the current topic. Asides serve a number of purposes. Some are little
history lessons. For example, where did C, Linux, and the Internet come from? Other asides are meant
to clarify ideas that students often find confusing. For example, what is the difference between a cache
line, set, and block? Other asides give real-world examples. For example, how a floating-point error
crashed a French rocket, or what the geometry of an actual Seagate disk drive looks like. Finally, some

asides are just fun stuff. For example, what is a “hoinky”?

10 - Preface

Book Overview

The CS:APP book consists of 12 chapters designed to capture the core ideas in
computer systems:

® Chapter 1: A Tour of Computer Systems. This chapter introduces the major
ideas and themes in computer systems by tracing the life cycle of a simple
“hello, world” program.

Chapter 2: Representing and Manipulating Information. We cover computer
arithmetic, emphasizing the properties of unsigned and two’s-complement
number representations that affect programmers. We consider how numbers
are represented and therefore what range of values can be encoded for a given
word size. We consider the effect of casting between signed and unsigned num-
bers. We cover the mathematical properties of arithmetic operations. Novice
programmers are often surprised to learn that the (two’s-complement) sum
or product of two positive numbers can be negative. On the other hand, two’s-
complement arithmetic satisfies the algebraic properties of a ring, and hence a
compiler can safely transform multiplication by a constant into a sequence of
shifts and adds. We use the bit-level operations of C to demonstrate the prin-
ciples and applications of Boolean algebra. We cover the IEEE floating-point
format in terms of how it represents values and the mathematical properties
of floating-point operations.

Having a solid understanding of computer arithmetic is critical to writing
reliable programs. For example, programmers and compilers cannot replace
the expression (x<y) with (x-y < 0), due to the possibility of overflow. They
cannot even replace it with the expression (-y < -x), due to the asymmetric
range of negative and positive numbers in the two’s-complement represen-
tation. Arithmetic overflow is a common source of programming errors and
security vulnerabilities, yet few other books cover the properties of computer
arithmetic from a programmer’s perspective.

Chapter 3: Machine-Level Representation of Programs. We teach you how to
read the IA32 and x86-64 assembly language generated by a C compiler. We
cover the basic instruction patterns generated for different control constructs,
such as conditionals, loops, and switch statements. We cover the implemen-
tation of procedures, including stack allocation, register usage conventions,
and parameter passing. We cover the way different data structures such as
structures, unions, and arrays are allocated and accessed. We also use the
machine-level view of programs as a way to understand common code se-
curity vulnerabilities, such as buffer overflow, and steps that the programmer,
the compiler, and the operating system can take to mitigate these threats.
Learning the concepts in this chapter helps you become a better programmer,
because you will understand how programs are represented on a machine.
One certain benefit is that you will develop a thorough and concrete under-
standing of pointers.

® Chapter 4: Processor Architecture. This chapter covers basic combinational
and sequential logic elements, and then shows how these elements can be

combined in a datapath that executes a simplified subset of the IA32 instruc-
tion set called “Y86.” We begin with the design of a single-cycle datapath. This
design is conceptually very simple, but it would not be very fast. We then intro-
duce pipelining, where the different steps required to process an instruction
are implemented as separate stages. At any given time, each stage can work
on a different instruction. Our five-stage processor pipeline is much more re-
alistic. The control logic for the processor designs is described using a simple
hardware description language called HCL. Hardware designs written in HCL
can be compiled and linked into simulators provided with the textbook, and
they can be used to generate Verilog descriptions suitable for synthesis into
working hardware.

Chapter 5: Optimizing Program Performance. This chapter introduces a num-
ber of techniques for improving code performance, with the idea being that
programmers learn to write their C code in such a way that a compiler can
then generate efficient machine code. We start with transformations that re-
duce the work to be done by a program and hence should be standard practice
when writing any program for any machine. We then progress to transforma-
tions that enhance the degree of instruction-level parallelism in the generated
machine code, thereby improving their performance on modern “superscalar”
processors. To motivate these transformations, we introduce a simple opera-
tional model of how modern out-of-order processors work, and show how to
measure the potential performance of a program in terms of the critical paths
through a graphical representation of a program. You will be surprised how
much you can speed up a program by simple transformations of the C code.

Chapter 6: The Memory Hierarchy. The memory system is one of the most visi-
ble parts of a computer system to application programmers. To this point, you
have relied on a conceptual model of the memory system as a linear array with
uniform access times. In practice, a memory system is a hierarchy of storage
devices with different capacities, costs, and access times. We cover the differ-
ent types of RAM and ROM memories and the geometry and organization of
magnetic-disk and solid-state drives. We describe how these storage devices
are arranged in a hierarchy. We show how this hierarchy is made possible by
locality of reference. We make these ideas concrete by introducing a unique
view of a memory system as a “memory mountain” with ridges of temporal
locality and slopes of spatial locality. Finally, we show you how to improve the
performance of application programs by improving their temporal and spatial
locality.

Chapter 7: Linking. This chapter covers both static and dynamic linking, in-
cluding the ideas of relocatable and executable object files, symbol resolution,
relocation, static libraries, shared object libraries, and position-independent
code. Linking is not covered in most systems texts, but we cover it for sev-
eral reasons. First, some of the most confusing errors that programmers can
encounter are related to glitches during linking, especially for large software
packages. Second, the object files produced by linkers are tied to concepts
such as loading, virtual memory, and memory mapping.

Preface - 11

12 - Preface

® Chapter 8: Exceptional Control Flow. In this part of the presentation, we
step beyond the single-program model by introducing the general concept
of exceptional control flow (i.e., changes in control flow that are outside the
normal branches and procedure calls). We cover examples of exceptional
control flow that exist at all levels of the system, from low-level hardware
exceptions and interrupts, to context switches between concurrent processes,
to abrupt changes in control flow caused by the delivery of Unix signals, to
the nonlocal jumps in C that break the stack discipline.
This is the part of the book where we introduce the fundamental idea of
a process, an abstraction of an executing program. You will learn how pro-
cesses work and how they can be created and manipulated from application
programs. We show how application programmers can make use of multiple
processes via Unix system calls. When you finish this chapter, you will be able
to write a Unix shell with job control. It is also your first introduction to the
nondeterministic behavior that arises with concurrent program execution.

Chapter 9: Virtual Memory. Our presentation of the virtual memory system
seeks to give some understanding of how it works and its characteristics. We
want you to know how it is that the different simultaneous processes can each
use an identical range of addresses, sharing some pages but having individual
copies of others. We also cover issues involved in managing and manipulating
virtual memory. In particular, we cover the operation of storage allocators
such as the Unix malloc and free operations. Covering this material serves
several purposes. It reinforces the concept that the virtual memory space is
just an array of bytes that the program can subdivide into different storage
units. It helps you understand the effects of programs containing memory ref-
erencing errors such as storage leaks and invalid pointer references. Finally,
many application programmers write their own storage allocators optimized
toward the needs and characteristics of the application. This chapter, more
than any other, demonstrates the benefit of covering both the hardware and
the software aspects of computer systems in a unified way. Traditional com-
puter architecture and operating systems texts present only part of the virtual
memory story.

® Chapter 10: System-Level I/0. We cover the basic concepts of Unix I/O such
as files and descriptors. We describe how files are shared, how I/O redirection
works, and how to access file metadata. We also develop a robust buffered I/O
package that deals correctly with a curious behavior known as short counts,
where the library function reads only part of the input data. We cover the C
standard I/O library and its relationship to Unix I/O, focusing on limitations
of standard I/O that make it unsuitable for network programming. In general,
the topics covered in this chapter are building blocks for the next two chapters
on network and concurrent programming.

® Chapter 11: Network Programming. Networks are interesting I/O devices to
program, tying together many of the ideas that we have studied earlier in the
text, such as processes, signals, byte ordering, memory mapping, and dynamic

storage allocation. Network programs also provide a compelling context for
concurrency, which is the topic of the next chapter. This chapter is a thin slice
through network programming that gets you to the point where you can write
a Web server. We cover the client-server model that underlies all network
applications. We present a programmer’s view of the Internet, and show how
to write Internet clients and servers using the sockets interface. Finally, we
introduce HTTP and develop a simple iterative Web server.

® Chapter 12: Concurrent Programming. This chapter introduces concurrent
programming using Internet server design as the running motivational ex-
ample. We compare and contrast the three basic mechanisms for writing con-
current programs—processes, I/O multiplexing, and threads—and show how
to use them to build concurrent Internet servers. We cover basic principles of
synchronization using P and V semaphore operations, thread safety and reen-
trancy, race conditions, and deadlocks. Writing concurrent code is essential
for most server applications. We also describe the use of thread-level pro-
gramming to express parallelism in an application program, enabling faster
execution on multi-core processors. Getting all of the cores working on a sin-
gle computational problem requires a careful coordination of the concurrent
threads, both for correctness and to achieve high performance.

New to this Edition

The first edition of this book was published with a copyright of 2003. Consider-

ing the rapid evolution of computer technology, the book content has held up

surprisingly well. Intel x86 machines running Unix-like operating systems and

programmed in C proved to be a combination that continues to encompass many

systems today. Changes in hardware technology and compilers and the experience

of many instructors teaching the material have prompted a substantial revision.
Here are some of the more significant changes:

® Chapter 2: Representing and Manipulating Information. We have tried to make
this material more accessible, with more careful explanations of concepts
and with many more practice and homework problems. We moved some of
the more theoretical aspects to Web asides. We also describe some of the
security vulnerabilities that arise due to the overflow properties of computer
arithmetic. C

o Chapter 3: Machine-Level Representation of Programs. We have extended our
coverage to include x86-64, the extension of x86 processors to a 64-bit word
size. We also use the code generated by a more recent version of gcc. We have
enhanced our coverage of buffer overflow vulnerabilities. We have created
Web asides on two different classes of instructions for floating point, and
also a view of the more exotic transformations made when compilers attempt
higher degrees of optimization. Another Web aside describes how to embed
x86 assembly code within a C program.

Preface - 13

14 - Preface

o Chapter 4: Processor Architecture. We include a more careful exposition of
exception detection and handling in our processor design. We have also cre-
ated a Web aside showing a mapping of our processor designs into Verilog,
enabling synthesis into working hardware.

e Chapter 5: Optimizing Program Performance. We have greatly changed our
description of how an out-of-order processor operates, and we have created
a simple technique for analyzing program performance based on the paths
in a data-flow graph representation of a program. A Web aside describes
how C programmers can write programs that make use of the SIMD (single-
instruction, multiple-data) instructions found in more recent versions of x86
processors.

e Chapter 6: The Memory Hierarchy. We have added material on solid-state
disks, and we have updated our presentation to be based on the memory
hierarchy of an Intel Core i7 processor.

e Chapter 7: Linking. This chapter has changed only slightly.

e Chapter 8: Exceptional Control Flow. We have enhanced our discussion of
how the process model introduces some fundamental concepts of concurrency,
such as nondeterminism.

o Chapter 9: Virtual Memory. We have updated our memory system case study to
describe the 64-bit Intel Core i7 processor. We have also updated our sample
implementation of malloc to work for both 32-bit and 64-bit execution.

e Chapter 10: System-Level I/0. This chapter has changed only slightly.
e Chapter 11: Network Programming. This chapter has changed only slightly.

o Chapter 12: Concurrent Programming. We have increased our coverage of the
general principles of concurrency, and we also describe how programmers
can use thread-level parallelism to make programs run faster on multi-core
machines.

In addition, we have added and revised a number of practice and homework
problems.

Origins of the Book

The book stems from an introductory course that we developed at Carnegie Mel-
lon University in the Fall of 1998, called 15-213: Introduction to Computer Systems
(ICS) [14]. The ICS course has been taught every semester since then, each time to
about 150-250 students, ranging from sophomores to masters degree students and
with a wide variety of majors. It is a required course for all undergraduates in the
CS and ECE departments at Carnegie Mellon, and it has become a prerequisite
for most upper-level systems courses.

The idea with ICS was to introduce students to computers in a different way.
Few of our students would have the opportunity to build a computer system. On
the other hand, most students, including all computer scientists and computer
engineers, will be required to use and program computers on a daily basis. So we

