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Preface

This small volume introduces several important methods for calculating ap-
proximations to the periodic solutions of “truly nonlinear” (TNL) oscillator
differential equations. This class of equations take the form

i+ g(z) = eF(z, 1),

where g(x) has no linear approximation at 2 = 0. During the past several
decades a broad range of calculational procedures for solving such differ-
ential equations have been created by an internationally based group of
researchers. These techniques appear under headings such as

averaging

combined and linearization
harmonic balance

homotopy perturbation
iteration

parameter expansion
variational iteration methods.

Further, these methodologies have not only been applied to TNL oscillators,
but also to strongly nonlinear oscillations where a parameter may take on
large values. Most of these techniques have undergone Darwinian type
evolution and, as a consequence, a large number of papers are published
each year on specializations of a particular method. While we have been
thorough in our personal examination of the research literature, only those
papers having an immediate connection to the topic under discussion are
cited because of the magnitude of existing publications and because an
interested user of this volume can easily locate the relevant materials from
various websites.

vii



viii Truly Nonlinear Oscillators

We have written this book for the individual who wishes to learn, under-
stand, and apply available techniques for analyzing and solving problems
involving TNL oscillations. It is assumed that the reader of this volume has
a background preparation that includes knowledge of perturbation methods
for the standard oscillatory systems modeled by the equation

4z =eF(z,).
In particular, this includes an understanding of concepts such as secular
terms, limit-cycles, uniformly-valid approximations, and the elements of
Fourier series.

The basic style and presentation of the material in this book is heuristic
rather than rigorous. The references at the end of each chapter, along with
an examination of relevant websites, will allow the reader to fully compre-
hend what is currently known about a particular technique. However, the
reader should also realize that the creation and development of most of the
methods discussed in this book do not derive from rigorous mathematical
derivations. This task is a future project for those who have the interests
and necessary background to carry out these procedures. However, these
efforts are clearly not relevant for our present needs.

The book consists of seven chapters and several appendices. Chapter 1
offers an overview of the book. In particular, it presents a definition of TNL
equations, introduces the concept of odd-parity systems, and calculates the
exact solutions to four TNL oscillatory systems.

Chapter 2 provides a brief discussion of several procedures for a priori
determining whether a given TNL differential equation has periodic and/or
oscillatory solutions. The next four chapters present introductions to most
of the significant procedures for calculating analytical approximations to
the solutions of TNL differential equations. These chapters discuss, respec-
tively, harmonic balance, parameter expansion, iteration, and averaging
methods. Each chapter gives not only the basic methodology for each tech-
nique, but also provides a range of worked examples illustrating their use.

The last chapter considers six TNL oscillator equations and compares
results obtained by all the methods that are applicable to each. It ends
with general comments on TNL oscillators and provides a short listing of
unresolved research problems.

We also include a number of appendices covering topics relevant to un-
derstanding the general issues covered in this book. The topics discussed
range from certain mathematical relations to basic results on linear second-
order differential equations having constant coefficients. Brief presentations
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are given on Fourier series, the Lindstedt-Poincaré perturbation method,
and the standard first-order method of averaging. A final appendix, “Dis-
crete Models of Two TNL Oscillators,” illustrates the complexities that may
arise when one attempts to construct discretizations to calculate numerical
solutions.

I thank my many colleagues around the world for the interest in my
work, their generalization of these results and their own original “creations”
on the subject of TNL oscillations. As always, I am truly grateful to Ms. An-
nette Rohrs for her technical services in seeing that my handwritten pages
were transformed into the present format. Both she and my wife, Maria
Mickens, provided valuable editorial assistance and the needed encourage-
ment to successfully complete this project. Finally, I wish to acknowledge
Dr. Shirley Williams-Kirksey, Dean of the School of Arts and Sciences, for
providing Professional Development Funds to assist in the completion of
this project. Without this support the writing effort would not have been
done on time.

Ronald E. Mickens
Atlanta, GA
August 2009
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Chapter 1

Background and General Comments

This chapter introduces the basic, but fundamental concepts relating to the
class of oscillators we call “truly nonlinear.” The two phrases “truly nonlin-
ear oscillators” and “truly nonlinear differential equations” are used inter-
changeable. In Sections 1.1 and 1.2, respectively, we define truly nonlinear
(TNL) functions and TNL oscillators. Section 1.3 presents general com-
ments regarding time reversal invariant systems and odd parity oscillators.
Section 1.4 discusses the important topic of the elimination of dimensional
quantities in the physical nonlinear differential equations through the use
of scaling parameters. The existence of and exact solutions to four TNL
oscillators are given in Section 1.5; this is followed by a brief overview of
four methods that can be used to construct analytic approximations to the
periodic solutions for TNL oscillator differential equations. We conclude
the chapter with a set of possible criteria that may be used to judge the
value of a calculational method for generating approximate solutions.

1.1 Truly Nonlinear Functions
A TNL function is defined with respect to its properties in a neighborhood
at a given point. For our purposes, we select 2 = 0. Thus, for a function

f(z), we make the following definition:

Definition 1.1. f(z) is a TNL function, at z = 0, if f(z) has no linear
approximation in any neighborhood of z = 0.

The following are several explicit examples of TNL functions

fi(z) =2, folz) =23, fi(z) ==z +2V3 (1.1.1)



