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FOREWORD

The second part of our book is devoted to Martingale theory; it
is longer than the first and what remains to be written, to fulfil the
promise in our title, is even longer. At any rate the reader will find
here plenty of probability and a (somewhat pale) appearance of the word
potential.

This volume contains the classical martingalé theory, for
discrete and continuous time, decomposition theory for Supermartingales
and several subjects not mentioned in the first edition: Yocal martin-
gales, quasimartingales, semimartingales, the spaces H! and BMCU and
Burkholder's inequalities. We also complete the account of §eheral
process theory begun in Chapter IV. We have also included the theory of
stochastic integrals, after some hesitation, for this takes us sdme way
from potential theory.

On the other hand, we sav notnhing about stochastic
differential equations and almost nothing about probabilistic applica-
tions of martingale and stochastic integral theory (representations,
predictability, filtrations,...). On these subjects the reader should
consult Jacod's book [4]:Calcul stochastique et problémes de martingales.

Our presentation doesn't claim to be either definitive (the
theory is advancing too quick]x) or complete. Nor do we make any
pedagogical claims and it would be unreasonable to use our book for
teaching without serious pruning - but we have tried to explain clearly
what we are ‘discussing and to provide sufficient comments.

We are most grateful to those who pointed out mistakes or
possible improvements. In particular: C.S. Chou, C. Doléans-Dade,

M. Emery, E. Lenglart, B. Maisonneuve, C. Stricker, K.A. Yen and M. Yor.

C. Dellacherie
P.A. Meyer



COMPLEMENTS TO CHAPTER IV

We were hampered in writing Chapters VI and VII by the fact
that certain properties had not been given sufficiently explicitly in
Chapter IV. We regroup them here.

We assume given (2, F, P) with a filtration (Ft) satisfying
the usual conditions.! We also assume that Fo_ = Fy.

If H is a right closed predictable set, its debut DH is a predictable
e.2

(2

im

|

Next we need to enumerate the jumps of an adapted cadlag
process.

THEOREM. Let (Xt) be an adapted cadlag real-valued process. We make
the convention Xo. = X;. Then the random set

U= {(t, w): Xt(w) # Xt_(w)}

is the union of a sequence of disjoint graphs ﬁTnH of stopping times.
If X is predictable, the Tn can be chosen to be predictable.

Proof. We could use the sledge hammer theorem IV.117 (in the Appendix to
Chapter IV). It would be better to use more modest means.

We set U = ((t, w): iXt(w) - Xt_(m)l > 2-N} (n 2 0) and then
Vo = Ugs V, = Un\Un_1 (n > 0); the sets Vn are optional (predictable if
X is predictable) and disjoint.

1 See Remark E at the end of these complements.

2 For a rather more general result, cf. VIII.11. See Vol. 1, nos. 88 B,
Cy D.
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COMPLEMENTS TO CHAPTER IV
We then set
Di(w) = inflt: (t, w) € V b, DK*¥I(a) = inf(t > Df(w) : (t, w) € V)

so that Di is the i-th jump of X with amplitude lying between 2-" and
2-"*1; since X is cadlag, the set V, has no accumulation point at a
finite distance and the stopp1ng t1mes D enumerate the pcints of V « It
follows from A that the D are predlctable if X is predictable.

It only remains to renumber the double sequence (Dn) as a
sequence (Tn). :

REMARKS. (1) This argument applies equally well to a process with
values in a separable metrizable space E: the condition [X, - X, | >
27" would be replaced by d(Xt_, Xt) > 27", where d is a distance
defining the topology of E.

(2) See D below for an analogous, but rather more delicate,

property.

THEOREM. Let X be a cadlag real-valued process. Then X is predictable
if and only if the following two conditions are satisfied

(1) For every totally inaccessible stopping time T, X
{T < =}.

(2) For every predictable time T, X; is F;_-measurable on {T < =}.

T = XT- a.s. on

Proof. Suppose X is predictable. Then condition (2) is satisfied for
every (not necessarily predictable) stopping time T by IV.67. On the
other hand, we saw in B above that the set

= {0t w) 2 X lw) # X, (u)

is a countable union of graphs of predictable times and (1) follows
immediately.

Conversely, suppose that conditions (1) and (2) hold. We
represent the set U as a countzble union of graphs of Etoppinq times
S ard decompose each S into its totally 1nacc9551b!e part S and its
access1b1e part S (Iv. 81 (c)). By condition (1) S =~ a.s, and

S, = S; is hence accessib]e. Then the graph of Sn |s contained in a



COMPLEMENTS TO CHAPTER IV ' Xy

union of graphs of predictéb]e times (Snk)kem' (IV.§1 (a)). We set

vV = Un,kESnkB; by renumbering the double sequence (Snk) as a single
sequence, we can represent V as a union of graphs meD of predictable
times, which we can then easily make disjoint using a construction by
induction on m.1 '

For all m, the r.v. XT and X - are FT -measurable: the
first by condition (2) and the second by IV.67. The same is true of
AX XT XTm; and by IV.67 there exists a predictable process (Yt)
such that YTm = AXTmon {Tm =}. On the other hand, the graph ETmB is
prédictable. Then denoting by X_ the process (Xt-)tzo’ with Xo- = Xq,
which is Teft continuous and hence predictable, we have

_ m
X=X 42y Vg g

and this shows that X is predictable.
REMARK.  The same result is true for processes with values in a

separable metrizable space E: it suffices to embed E in [0, 1]N
apply Theorem C to each coordinate.

and

We now return to a result similar to Theorem B.

THEOREM ng,(xt) be a right continuous adapted real-valued process.
We make the convention Xy. = X;. Then the random variable

U= {(t, w) ZXt_(m) does not exist or Xt_(m) # Xt(m)}

is the union of a sequence of disjoint graphs ET&D of stopping times.?
If X is_predictable, the T can be chosen to be predictable.

Pﬁdof. We shall use a less éxplicit method than that of Theorem B,
without using the sledge hammer IV.117. This will illustrate the
possibilities offered by Chapter IV. We deal with the predictable case.

e e e v

T It suffices to set Ay = ITpD\ U DTpD; Ay is the graph of the
required stopping time Ty (cf. IV.88).
2 To within an evenescent set.
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We show first that U is predictable. For this we introduce

"the processes

Y: = limsups¢ft XS, Y; = 11minfs+*t XS

which are predictab]e by IV.90. Then U is the union of the two
pred1ctab1e sets {Y # X} and {Y  # X}.

To complete the proof it then suffices by IV.88 to show that
U is contained (to within an evanescent set) in a countab]e union of
graphs of positive random variables. We construct such r.v. - which are
in fact stopping times - as follows: let e > 0; by transfinite induction
we set

T =0, Tg

- 1 E .
4 = inf{t > T X

£ XTgl > e},
Tg = sup, o TZ if g is a limit ordinal.

As X is right continuous, Tg,, > TZon (TS <=} and it follows that
there exists a countable ordinal ¥y from which onwards TZ = 4= 3.S.
(Chapter 0, no. 8). Then U is centained in the union of all the graphs
of the TZ, for e = 1/n (n e N) and a < y_: the instants where the
Jeft 1imit does not exist last appear, for sufficiently small e, among
the Tg corresponding to the 1imit ordinals and the jump instants among
the To+;-

REMARK. We now indicate that this result extends easily to processes
with values in a compact metrizable space and a little less obviously
to processes with values in a separable metrizable space E: for the
latter case we embed E in a compact metrizable space F and note that

(o=
I

= {X,_ does not exist in E} v {X;_ exists in E and X, # X}

{X;_ does not exist in F} u {X;_ exists in F and X, ¢ E}

u {X,_exists in E and Xt- £ X

t-

= {X;. does not exist in F} v {X;_ exists in F and L F X
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)
since Xt always belongs to E. This thus reduces to the same problem,
but considering X as a process with values in F.

REMARK.  Some of the above properties remain true without any
t)‘ First of all A: if H is a right closed
predictable set, its debut D, is not necessarily a random variable

hypothesis on the family (F

since the o-fields are not assumed to be complete. But if D, is a

t) t+)’ then
DH is a predictable time. For then EDH, =»[[ =Hu BDH, =[[, a predict-

stopping time of the family (F,_) or only of the family (F
able set.
Similarly, 1f H is a right closed optional set and DH is a

stopping time of (F the set [DH, «[[ is optional and DH is a

t+)

s
t
We now pass to B. Instead of arguing as in the text, we

stopping time of (F
adapt the argument of D. Let ¢ > 0; we construct inductively

> ¢},

T5 = 0, Ther = inf{t > TE: [Xe = Xpel 2 e or [X - Xl
n n

It was shown in no. IV.64 that these r.v. are stopping times of (Ft)
and tend to = as n > ». If X is predictable, the Tﬁ are predictable by
A. The set U is contained in the union of the graphs ETnE forne N,
e =1/m (me N) and it remains to make a slight modification (replace
each Tﬁ by (T;)A(n,e)’ where A(n, ) is the event "X jumps at instant
TE") to represent U exactly as a countable union of graphs.

We shall not dwell on C and D: in the proof of D, it would
be necessary to consider the inf of the t > Ti such that Xy ora
cluster point of X at t- is at distance = ¢ from X

T

a
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CHAPTER V

GENERALITIES AND THE DISCRETE CASE

This chapter contains on the one hand the fundamental theorems of martingale
theory (inequalities, the stopping theorem, convergence theorems) in their
discrete form,and on the other hand a number of applications which appeared
in Chapter VIII of the first edition. This is a "classical" chapter, which
appears in much the same form in all books on probability later than Doob's
book [1]. We have abstained from substantially modifying it - the notes
entitled "Martingales and stochastic integrals" (Meyer [6]) give another
version, containing a few additional results. In this book our emphasis is

much more on martingale theory in continuous time, developed in Chapters VI
and VII.

1. DEFINITIONS AND GENERAL PROPERTIES

It is interesting to set up the notion of a martingale in all
its generality. Therefore in the following definition we denote by M a
set with an order relation denoted by <. We then very quickly restrict
ourselves to the case where T is an interval of the set of integers
(the continuous case, where T is an interval of R, will be studied in
‘later chapters). ,

The notions of an increasing family of o-fields and an adapted
process (IV.11 and IV.12) extend to arbitrary ordered sets in the
obvious way.

1 DEFINITION. Let (2, F, P) be a probability space, (Ft)t eTr 20
increasing family of sub-o-fields of F and X = (Xt)t T2 real-valued
process adapted to the family (Ft)' X is called a martingale (resp.
supermartingale, submartingale) with respect to the family (Ft) if

1



V GENERALITIES AND THE DISCRETE CASE

(1) each random variable Xt is integrable;

(2) for every ordered pair (s,t) of elements of T such that
s s t,

(1.1) E (X, |F) = X a.s. (resp. E X |F) <X, >X).

s s

REMARKS ~ (a) The notion of a martingale - and the word itself - were
introduced by Ville in a remarkable work (Ville [1]) to which we shall
return in the historical comments. The notion of a submartingale
(formerly called a "semimartingale", cf. Doob [1]) was defined and used
by Snell [1]. We stafe once and for all that it was Doob who proved
almost all the fundamental results and used them on all the battle-
fields of probability theory, in such a way that no probabilist can any
longer afford to ignore martingale theory.

(b) A process X is a submartingale if and only if -X is a
supermartingale. Therefore we shall restrict ourselves to studying one
of the two classes of processes - usually that of supermartingales,
which is more frequently used in potential theory.

-

(c) A stochastic process X, aiven without reference to a
family of o-fields, is called a martingale (resp. supermartingale) if
it catifies Definition 1 with respect to its natural family of o-fields

F. =T <
t (Xs’ s < t).

(d) Definition 1 has a number of more or less interesting
generalizations. The heart of martingale theory consists of results
about real-valued processes indexed by the integers or the reals,
defined on a probability space whose random variables are integrable
and satisfy (1.1). It is possible to relax one or other of these
hypotheses and get "generalized" theories

- the vast theory of vector-valued martingales, which we scarcely
touch on in this book!;

- the theory of martingales whose time set is not "linearly
ordered" (the case where T = RE or Nz for example?);
- marti gale theory over a g-finite measured space about which we

shall say a few words (nos. 39-43);

1 The basic results are given in Neveu [2], Chapter V, §2 (pp. 100-114).
2 See especially Cairoli [1], [2], (3] and Cairoli-Walsh [1].



