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Preface

Electrical impedance tomography (EIT) seeks to recover the electrical con-
ductivity distribution inside a body from measurements of current flows and
voltages on its surface. The vast and growing literature reflects many possible
applications of EIT techniques, e.g., for medical diagnosis or nondestructive
evaluation of materials.

Since the underlying inverse problem is nonlinear and severely ill-posed,
general purpose EIT reconstruction techniques are likely to fail. Therefore it
is generally advisable to incorporate a-priori knowledge about the unknown
conductivity. One such type of knowledge could be that the body consists
of a smooth background containing a number of unknown small inclusions
with a significantly different conductivity. This situation arises for example
in breast cancer imaging or mine detection. In this case EIT seeks to recover
the unknown inclusions. Due to the smallness of the inclusions the associ-
ated voltage potentials measured on the surface of the body are very close
to the potentials corresponding to the medium without inclusion. So unless
one knows exactly what patterns to look for, noise will largely dominate the
information contained in the measured data. Furthermore, in applications it
is often not necessary to reconstruct the precise values of the conductivity or
geometry of the inclusions. The information of real interest is their positions
and size.

The main purpose of this book is to describe fresh and promising tech-
niques for the reconstruction of small inclusions from boundary measurements
in a readable and informative form. These techniques rely on accurate asymp-
totic expansions of the boundary perturbations due to the presence of the
inclusions. The general approach we will take to derive these asymptotic ex-
pansions is based on layer potential techniques. This allows us to handle inclu-
sions with rough boundaries. In the course of deriving our asymptotic expan-
sions, we introduce new concepts of generalized polarization tensors (GPT’s).
GPT’s contain significant information on the inclusion which will be investi-
gated. We then apply the asymptotic expansions for designing efficient direct
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reconstruction algorithms to detect the location, size, and/or orientation of
the unknown inclusions.

This book would not have been possible without the collaborations and
the conversations with a number of outstanding colleagues. We have not only
profited from generous sharing of their ideas, insights and enthusiasm, but also
from their friendship, support and encouragement. We feel specially indebted
to Gen Nakamura, Jin Keun Seo, Gunther Uhlmann and Michael Vogelius.
This book is dedicated to our friendship with them.

We also would like to thank our colleagues Mark Asch, Yves Capde-
boscq, and Darko Volkov for reading parts of the preliminary version of the
manuscript and our students Ekaterina lakovleva, Eunjoo Kim, Mikyoung
Lim, Kaouther Louati, Sofiane Soussi, Karim Touibi, and Habib Zribi for pro-
viding us with numerical examples or/and carefully reading our manuscript.

During the preparation of this book we were supported by ACI Jeunes
Chercheurs (0693) from the French Ministry of Education and Scientific Re-
search and Korea Science and Engineering Foundation through the grant R02-
2003-000-10012-0.

Paris and Seoul, Habib Ammari
May 2004 Hyeonbae Kang
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1

Introduction

Electrical Impedance Tomography (EIT) is designed to produce, efficiently
and accurately, images of the conductivity distribution inside a body from
measurements of current flows and voltages on the body’s surface. Due to
several merits of EIT such as safety, low cost, real time monitoring, EIT has
received considerable attention for the last two decades; see for instance the
review papers [255, 256, 78, 58] and the extensive list of references therein.
The vast and growing literature reflects many possible applications of EIT.
e.g., for medical diagnosis or nondestructive evaluation of materials. In medi-
cal applications, EIT could potentially be used for monitoring lung problems,
noninvasive monitoring of heart function and blood flow, screening for breast
and prostate cancer, and improving electrocardiograms and electroencephalo-
grams [78, 37, 82, 83, 163, 164, 143].

However, insensitivity of boundary measurements to any change of inner-
body conductivity values has hampered EIT from providing accurate static
conductivity images [4]. In practice captured current-to-voltage pairs must be
limited by the number of electrodes attached on the surface of the body that
confine the resolution of the image [153, 101]. We can definitely increase the
resolution of the conductivity image by increasing the number of electrodes.
However, it should be noticed that beyond a certain level, increasing the
number of electrodes may not help in producing a better image for the inner-
region of the body if we take into account the inevitable noise in measurements
and the inherent insensitivity mentioned before.

In its most general form EIT is severely ill-posed and nonlinear. These
major and fundamental difficulties can be understood by means of a mean
value type theorem in elliptic partial differential equations. The value of the
voltage potential at each point inside the region can be expressed as a weighted
average of its neighborhood potential where the weight is determined by the
conductivity distribution. In this weighted averaging way, the conductivity
distribution is conveyed to the boundary potential. Therefore, the boundary
data is entangled in the global structure of the conductivity distribution in
a highly nonlinear way. This is the main obstacle to finding non-iterative
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reconstruction algorithms with limited data. If, however, in advance we have
additional structural information about the medium, then we may be able to
determine specific features about the conductivity distribution with a good
resolution. One such type of knowledge could be that the body consists of a
smooth background containing a number of unknown small inclusions with a
significantly different conductivity. This situation arises for example in breast
and prostate cancer imaging [37, 82, 83, 163, 164, 26, 243] or mine detection. In
this case EIT seeks to recover the unknown inclusions. Due to the smallness
of the inclusions the associated voltage potentials measured on the surface
of the body are very close to the potentials corresponding to the medium
without inclusions. So unless one knows exactly what patterns to look for,
noise will largely dominate the information contained in the measured data.
Furthermore, in applications it is often not necessary to reconstruct the precise
values of the conductivity or the geometry of the inclusions. The information
of real interest is their positions and size.

Taking advantage of the smallness of the inclusions, many promising recon-
struction techniques have been designed since the pioneering works by Fried-
man and Vogelius [120, 121, 123]. It turns out that the method of asymptotic
expansions of small volume inclusions provides a useful framework to recon-
struct the location and geometric features of the inclusions in a stable way,
even for moderately noisy data [73, 53, 28, 64, 191, 39, 261].

In this book we have made an attempt to describe these new and promis-
ing techniques for the reconstruction of small inclusions from boundary mea-
surements in a readable and informative form. As we said, these techniques
rely on accurate asymptotic expansions of the boundary perturbations due
to the presence of the inclusions. The general approach we will take in this
book is as follows. Based on layer potential techniques and decomposition
formulae like the one due to Kang and Seo in [168] for the conductivity
problem, we first derive complete asymptotic expansions. This allows us to
handle inclusions with rough boundaries and those with extreme conductiv-
ities. In the course of deriving our asymptotic expansions, we introduce new
concepts of generalized polarization tensors (GPT’s). These concepts gen-
eralize those of classical Polya-Szego polarization tensors which have been
extensively studied in the literature by many authors for various purposes
[72, 24, 73, 212, 104, 105, 200, 198, 123, 180, 94, 186, 231, 232, 241, 95]. The
GPT’s appear naturally in higher-order asymptotics of the steady-state volt-
age potentials under the perturbation of conductor by conductivity inclusions
of small diameter. GPT’s contain significant information on the inclusion that
will be investigated. We then apply the asymptotic expansions for designing
efficient direct reconstruction algorithms to detect the location, size, and/or
orientation of the unknown inclusions.

The book is intended to be self-contained. However, a certain familiarity
with layer potential techniques is required. The book is divided into three
parts that can be read independently.
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Part I consists of four chapters dealing with the conductivity problem. It
is organized as follows. In Chap. 2, we introduce the main tools for studying
the conductivity problem and collect some notation and preliminary results
regarding layer potentials. In Chap. 3, we introduce the GPT’s associated
with a Lipschitz bounded domain B and a conductivity 0 < k # 1 < +00. We
prove that the knowledge of all the GPT’s uniquely determines the domain
B and the conductivity k. We also provide important symmetric properties
and positivity of the GPT’s and derive isoperimetric inequalities satisfied by
the tensor elements of the GPT’s. These relations can be used to find bounds
on the weighted volume. In Chap. 4, we provide a rigorous derivation of high-
order terms in the asymptotic expansion of the output voltage potentials.
The proofs of our asymptotic expansions are radically different from the ones
in [123, 73, 259]. What makes the proofs particularly original and elegant is
that the rigorous derivation of high-order terms follows almost immediately.
In Chap. 5, we apply our accurate asymptotic formula for the purpose of
identifying the location and certain properties of the shape of the conductivity
inclusions. By improving the algorithm of Kwon, Seo, and Yoon [191] we first
design two real-time algorithms with good resolution and accuracy. We then
describe the variational algorithm introduced in [28] and review the interesting
approach proposed by Briithl, Hanke, and Vogelius [64]. Their method is in
the spirit of the linear sampling method of Colton and Kirsch [89].

In Part II we develop a method to detect the size and the location of an
inclusion in a homogeneous elastic body in a mathematically rigorous way. In-
clusions of small size are believed to be the starting point of crack development
in elastic bodies. In Chap. 5, we review some basic facts on the layer poten-
tials of the Lamé system. In Chap. 6, we give in a way analogous to GPT’s,
mathematical definitions of elastic moment tensors (EMT’s) and show sym-
metry and positive-definiteness of the first-order EMT. The first-order EMT
was introduced by Maz'ya and Nazarov [202]. In Chap. 7, we find a complete
asymptotic formula of solutions of the linear elastic system in terms of the size
of the inclusion. The method of derivation is parallel to that in Part I apart
from some technical difficulties due to the fact that we are dealing with a sys-
tem, not a single equation, and the equations inside and outside the inclusion
are different. Based on this asymptotic expansion we derive in Chap. 8 for-
mulae to find the location and the order of magnitude of the elastic inclusion.
The formulae are explicit and can be easily implemented numerically.

The problem we consider in Part III is to detect unknown dielectric inclu-
sions by means of a finite number of voltage-to-current pairs measured on the
boundary. We consider solutions to the Helmholtz equation in two and three
dimensions. We begin by proving in Chap. 9 existence and uniqueness of a
solution to the Helmholtz equation. The proof, due to Vogelius and Volkov
[259], uses the theory of collectively compact operators. Based on layer po-
tential techniques and two new decomposition formulae of the solution to the
Helmholtz equation, established in Chap. 10, we provide in Chap. 11 for such
solutions a rigorous systematic derivation of complete asymptotic expansions
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of perturbations resulting from the presence of diametrically small inclusions
with constitutive parameters different from those of the background medium.
The leading-order term in these asymptotic formulae has been derived by
Vogelius and Volkov in [259]. We then develop in Chap. 12 two effective algo-
rithms for reconstructing small dielectric inclusions from boundary measure-
ments at a fixed frequency. The first algorithm, like the variational method
in Chap. 5, reduces the reconstruction problem of the small inclusions to the
calculation of an inverse Fourier transform. The second one is the MUSIC
(standing for MUItiple-Signal-Classification) algorithm. We explain how it
applies to imaging of small dielectric inclusions. Another algorithm based on
projections on three planes was proposed and successfully tested by Volkov
in [261]. Results similar to those presented in this part have been obtained in
the context of the full (time-harmonic) Maxwell equations in [31].

Finally, it is important to note that some of the techniques described
in this book can be applied to problems in many fields other than inverse
boundary value problems. In this connection we would particularly like to
mention the mathematical theory of composite materials [84, 206, 186, 211, 24]
and topological shape optimization [222, 196, 126, 132, 239).
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Detection of Small Conductivity Inclusions






Let 2 be a bounded domain in IRY, d > 2, with a connected Lipschitz bound-
ary 0f2. Let v denote the unit outward normal to 92. Suppose that 2 con-
tains a finite number m of small inclusions D,, s = 1,...,m, each of the form
Dy = €Bs + z5, where By, s = 1,...,m, is a bounded Lipschitz domain in
RY containing the origin. We assume that the domains D,, s = 1,...,m, are
separated from each other and from the boundary. More precisely, we assume
that there exists a constant c¢g > 0 such that

|zs — 25| > 2¢0 >0 Vs#s and dist(z,,002) >2co >0 Vs,

that €, the common order of magnitude of the diameters of the inclusions, is
sufficiently small and that these inclusions are disjoint. We also assume that
the background is homogeneous with conductivity 1 and the inclusion D, has
conductivity ks, 0 < ks # 1 < 400, for 1 < s < m.

Let u denote the steady-state voltage potential in the presence of the
conductivity inclusions |JI-; D, i.e., the solution in W12(£2) to

V.- (x(Q\ U E) +Zk.gX(Ds)>Vu =0 in 2,
s=1

s=1
ou
. =g-
APy

Let U denote the "background” potential, that is, the solution to

AU =0 in 2,
o =g
W log =

The function g represents the applied boundary current; it belongs to L2(942)
and has mean value zero. The potentials, u and U, are normalized by
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/ud(r:/ Udo=0.
o0 Jos

The problem we consider in this part is to determine unknown inclusions
Dg, s = 1,...,m, by means of one or a finite number of current-to-voltage
pairs (g, ulo) measured on 0f2.

This problem is called the inverse conductivity problem with one or finite
boundary measurements (or Electrical Impedance Tomography) in contrast
with the many measurements problem (or Calderon’s problem) where an infi-
nite number of boundary measurements are used. In many applied situations,
it is the potential u that is prescribed and the current g that is measured on
0f2. This makes some difference (not significant theoretically and computa-
tionally) in the case of finite boundary measurements but makes almost no
difference in the case of many boundary measurements, since actually it is the
set of Cauchy data (g, u|aq) that is given.

For the many measurements problem there is a well-established theory. We
refer to the survey papers of Sylvester and Uhlmann [249], and of Uhlmann
[255, 256], as well as to the book of Isakov [158], since this problem is out of
the scope of our monograph. When d > 2, many boundary measurements pro-
vide much more information about the conductivity of {2 than a finite number
of measurements. Thus, the inverse conductivity problem with finite measure-
ments is more difficult than the one with many boundary measurements and
not much was known about it until recently. Fortunately, there has been over
the last few years a considerable amount of interesting work and new tech-
niques dedicated to both theoretical and numerical aspects of this problem.
It is the purpose of this part to describe some of these fresh and promising
techniques, in particular, those for the reconstruction of diametrically small
inclusions.

Let us very briefly emphasize our general methodology for solving our
inverse conductivity problem (with finite measurements). We first derive an
asymptotic expansion of the boundary voltage difference u — U to any order in
€. Then we apply this very explicit asymptotic behavior to the effective esti-
mation of the location and some geometric features of the set of conductivity
inclusions U:":1 D,. To present these results we shall need a decomposition
formula of u into a harmonic part and a refraction part, the Neumann function
associated with the background conductor {2, and the generalized polarization
tensors (GPT’s) associated with the scaled domains B and their conductivi-
ties ks. The GPT’s are in fact the basic building blocks for our full asymptotic
expansion of u — U on 9f2 and contain significant information on the domains
B, and their conductivities k. Then it is important to precisely characterize
these GPT’s and derive their basic properties.

The problem we consider here occurs in many practical situations. The
inclusions [, D, might in a medical application represent potential tumors,
in a material science application they might represent impurities, and finally
in a war or post-war situation they could represent anti-personnel mines.
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In medical applications, EIT is supported by the experimental evidence
that different biological tissues have different electrical properties that change
with cell concentration, cellular structure, molecular composition, and so
on [165, 245]. Therefore, these properties manifest structural, functional,
metabolic, and pathological conditions of the tissue providing valuable di-
agnostic information.

We conclude this introduction with a discussion of classical image recon-
struction algorithms in EIT.

The most classical technique consists of a minimization approach. We as-
sume an initial conductivity distribution for the model and iteratively update
it until it minimizes the difference between measured and computed boundary
voltages. This kind of method was first introduced in EIT by Yorkey, Webster,
and Tompkins [266] following numerous variations and improvements. These
include utilization of a priori information, various forms of regularization,
and so on [264, 145, 257, 86]. Even though this approach is widely adopted
for imaging by many researchers, it requires a large amount of computation
time for producing images even with low spatial resolution and poor accuracy.

In the 1980’s, Barber and Brown [45] introduced the back-projection algo-
rithm for EIT that was the first fast and useful algorithm although it provides
images with very low resolution. Since this algorithm is inspired from the com-
puted tomography (CT) algorithm, it can be viewed as a generalized Radon
Transform [240].

The third technique is the dynamical electrical impedance imaging. This
interesting and sophisticated technique, developed by the Rensselaer im-
pedance tomography group (78, 80, 79, 213, 244, 246, 108, 129, 124, 154, 153],
is designed to produce images of a change of conductivity in the human body
for purpose of applications in cardiac and respiratory imaging. The main idea
is to decompose the conductivity into a static term, viewed as the background
conductivity of human body, and a perturbing term, considered as the change
of conductivity due to respiratory or heart function. The mathematical prob-
lem here is to visualize the perturbing term by an EIT system. Although this
algorithm can provide accurate images when an initial guess of the background
conductivity is reasonably good, it seems that new ideas are still needed to
obtain good resolution images and completely satisfy practitioners, specially
in screening for breast cancer.

Our main aim in this part is to propose a new mathematical direction
of future EIT research mainly for biomedical applications. A new electronic
system based on the mathematical modeling described in this book is be-
ing developed for breast cancer imaging at the Impedance Imaging Research
Center by Jin Keun Seo and his group [26, 243, 192].



