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Preface

The papers assembled in this volume were presented at COMPSTAT
1988, the 8th biannual Symposium in Computational Statistics held
under the auspices of the International Association for Statistical
Computing.

The current impact of computers on the theory and practice of
statistics can be traced at many levels: on one level, the ubiquitous
personal computer has made methods for explorative data analysis and
display, rarely even described in conventional statistics textbooks,
widely available. At another level, advances in computing power permit
the development and application of statistical methods in ways that
previously have been infeasible. Some of these methods, for example
Bayesian methods, are deeply rooted in the philosophical basis of
statistics, while others, for example dynamic graphics, present the
classical statistical framework with quite novel perspectives.

The contents of this volume provide a cross-section of current
concerns and interests in computational statistics. A dominating topic is
the application of artificial intelligence to statistics (and vice versa),
where systems deserving the label "expert systems” are just beginning to
emerge from the haze of good intentions with which they hitherto have
been clouded. Other topics that are well represented include:
nonparametric » estimation, graphical techniques, algorithmic
developments in all areas, projection pursuit and other computationally
intensive methods.

COMPSTAT symposia have been held biannually since 1974. This
tradition has made COMPSTAT a major forum for advances in
computational statistics with contributions from many countries in the
world. Two new features have been introduced at COMPSTAT ’88.
Firstly, the category of keynote papers has been introduced to highlight
contributions judged to be of particular importance. Secondly, tutorial
sessions in dynamic graphics (R. Becker), artificial intelligence in



VI

statistics (W. Gale) and graphical modelling (N. Wermuth) have been
arranged, to satisfy the widespread interest in these new topics.

The programme committee, which consisted of E. B. Andersen, H.
Caussinus, D. Edwards (chairman), D. Hand, T. Havranek, N. Lauro,
F. van Nes and B. Streitberg, had the painful task of choosing 60 papers
for publication in these proceedings, out of several hundred received.
The criteria used were originality, accuracy and that the topics should
have bearing on both statistics and computation.

The scientific programme consisted of the contributed, invited and
keynote papers (collected in this volume) and short communications,
posters and tutorials (collected elsewhere). Moreover, presentations and
demonstrations of non-commercial software, an exhibition of
commercial software, a book exhibition, and not least irpportant an
exhilarating social programme were arranged by the organizing
committee, which consisted of P. Allerup, I. A. Larsen, A. Milhgj and
N. E. Raun (chairman). The assistance of Lone Cramer is also gratefully
acknowledged. The meeting was arranged by UNI.C, Danish
Computing Centre for Research and Education and was sponsored by
the Danish Research Council.

David Edwards « Niels E. Raun
Copenhagen

July 1988
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Parallel Linear Algebra in Statistical Computations

G. W. Stewart*, Maryland

1. Introduction

The main problem in parallel computation is to get a number of computers to cooperate
in solving a single problem. The word “single” is necessary here to exclude the case of
processors in a system working on unrelated problems. Ideally we should like to take a
problem that requires time T to solve on a single processor and solve it in time T/p on
a system consisting of p processors. We say that a system is effictent in proportion as it
achieves this goal.

In some statistical applications, like bootstrapping or simulations, this goal is easy to
achieve. The reason is that the problems divide into independent subtasks, which can
be run separately with the results being collected at the end. Although this should be
gratifying to statisticians, such problems are not very interesting to people doing research
in parallel computing.

Fortunately, there are large problems in regression analysis, signal processing, geodetics,
etc. that could potentially benefit from efficient parallelization. For many of these, the
heart of the computations is the numerical linear algebra. Consequently this paper is
devoted to some of the issues in implementing parallel matrix algorithms.

Just as there is no single general architecture for parallel computers, there is no general
theory of parallel matrix algorithms. The same sequential algorithm will be programmed
one way on one system and in a completely different way on another. Since the number of
potential architectures is very large [1,16], I have chosen to restrict this paper to three, for
which commercial systems are available. They are SIMD systems, shared-memory systems,
and message-passing systems. We shall treat each of these in the next three sections.

Given this paper’s title, its focus on computer architectures requires explanation. When
I sat down to write, I intended to stress statistics and parallel matrix computations. But
as I proceeded, it became clear that the key to current research and practice lay in the
machines themselves. Hence the change in emphasis.

2. SIMD Systems and Systolic Arrays

A single-instruction, multiple-data (SIMD [8]) system is a group of (usually simple) pro-
cessors that execute the same sequence of instructions in lockstep under a global control.
This results in a nontrivial computation because the instructions are executed with differ-
ent data, which can pass from processor to processor to be combined with other data.

*This work was supported in part by the Air Force Office of Sponsored Research under grant AFOSR-
82-0078.
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Originally a systolic array meant an array of special processors, acting in lockstep,
through which data was pumped like blood through the heart [20]. Since the processors are
not conceived to be programmable but do have the ability to perform different functions,
systolic arrays are not, strictly speaking, SIMD systems. But neither system exists in a
pure form, and the distinction has become blurred. Thus the term “systolic algorithm” is
now used for algorithms that can be implemented on either system.

As an example, let us consider a systolic array to accumulate the cross-product matrix
A= X"X of an n x k regression matrix X. If we write A in the form

Q;; = T1iT; + T2iT; + - + TpiTyj (1)

we see that the problem is to extract the ith and jth elements from each row of X and
add their products to a;;. If we assign a processor to each element of A, then the problem
becomes one of making sure that z; and zj; arrive at the processor responsible for a;; at
the same time.

A systolic array for accumulating the upper half of A might be organized as follows.

Here the boxes stand for processors and the arrows indicate how data flows through the
array. Each processor is associated with an element of the upper half of the cross-product
matrix as shown in the figure. The rows of ¢ are streamed through this processor array
as follows. Each element r;; enters the jth column of the array at the top. At each step
it moves down one processor until it gets to the diagonal, at which point it begins moving
across the jth row and eventually out of the computer.

Figure 1 shows the flow of data in greater detail. The numbers associated with the
arrows are the subscripts of the elements of X that are about to enter the processor. When
they enter, the processor multiplies them and adds them to the element of A for which it
is responsible. Note that the flow of data is such that the appropriate elements of X end
up at a processor at the right time.

It is instructive to look at this system from the point of view of an individual processor,
say processor (I,J). If we refer to the values in the communication links to the north,
south, east and west by northx, southx, eastx, and westx, and a denotes the current
value of arj, then a program for the (I,J)-processor might read as follows.

if (I == J)

westx = northx;
a = a + northx*westx;
eastx = westx;
southx = northx;



Figure 1: Flow of Data for A = XTX

Here it is understood that one iteration of the code is performed each time the controller
signals the system to advance a step.

There are three things to note about this code. First, it is not strictly SIMD, since the
processors on the diagonal behave differently from the others. However, a single program
suffices for all processors, a situation sometimes tagged SPMD (single program, multiple
data). Second, the code is local. Each processor knows only about its own variables and
its input and output. Third, communication is explicit; the code specifies where the data
comes from and where it goes to. These characteristics, which programs for systolic systems
share with message-passing systems, make for code that is not obviously linked to its task.
Certainly it is not easy to recognize equation (1) in the above program. Nonetheless, there
is a certain satisfaction in designing systolic algorithms for matrix computations to judge
from the number that have been published (e.g., see [3,5,21,29,30]).

When systolic arrays were first proposed, it was hoped that they would provided inex-
pensive, special-purpose processing for a variety of applications. Things have not worked
out this way. The array above is a toy that solves a 4 x 4 problem. To accumulate a
100 x 100 matrix one would require 5,050 processors—nontrivial processors that can per-
form floating-point arithmetic. Moreover, one cannot afford to build such a big system
for a single application; the processors must also be programmable, which increases their
complexity. The end result of these considerations is the WARP computer, a linear systolic
array of high-performance processors [2]. By all accounts it is effective, but it is neither
simple nor cheap.

On the other hand, general purpose SIMD machines have been built and run on a
variety of problems. Their main advantage is that they can bring large numbers of simple
processors to bear on single problems. They are very effective with simple algorithms
that proceed in short, repetitive bursts of computations. Their main disadvantage is their
inflexibility. They are tedious to code, even for highly structured problems like computing



