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Preface

This book is based upon a series of lecture notes written by Professor E. M. L.
Beale FRS for his undergraduate course ‘Introduction to Optimization’, given at
Imperial College where he was a Visiting Professor in Mathematics from 1967
until his death in December 1985. Where necessary, additional material for the
chapters on the dual and primal simplex methods has been taken from Professor
Beale’s book Mathematical Programming in Practice (Beale, 1968). In addition,
Sections 6.3,6.4and 8.1 are based upon the papers ‘The current algorithmic scope
of mathematical programming systems’ (Beale, 1975), and ‘The evolution of
mathematical programming systems’ (Beale, 1985, reproduced by permission of
Pergamon Press), whilst the remainder of Chapters 8 and 9 are based on
Professor Beale’s unpublished paper ‘How to apply mathematical programming’,
which he wrote and continually revised for training courses given by the company
Scicon Ltd, of which he was a founder member and where he was for many years
Technical Director.

As the title suggests, this book is intended as an introduction to the many topics
covered by the heading Optimization, with special emphasis being placed on
applications of optimization in industry. Although the lecture notes upon which
the book is based were originally written for third-year mathematics under-
graduates, no detailed mathematical knowledge is assumed and the book is
equally suitable for engineers and computer scientists who are studying
options in Operational Research.

The book is divided into three parts. The first concentrates on Unconstrained
Optimization and describes some of the main techniques which have been
developed to solve problems of this kind. Chapter 2 discusses methods which can
be used to optimize functions of only one variable, whilst Chapter 3 considers
multi-variable functions. Emphasis is placed on the practical problems of why
and how methods succeed or fail, rather than on rigorous proofs about
convergence. The second part of the book, Unconstrained Optimization: Linear
Programming, describes the methods used to solve linear programming pro-
blems and applications of linear programming in industry. The simplex and dual
simplex methods are outlined very simply using numerical examples and ways in
which the simplex method has been adapted for use on computers are described.
Considerable emphasis is placed on the efficient modelling and systematic
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vi Preface

documentation of linear programming problems. The third part is entitled
Unconstrained Optimization: Non-Linear and Discrete, and covers non-linear
programming, integer programming and dynamic programming, showing how
the techniques of linear programming can be extended to handle non-linearities
and discrete entities.

I would like to thank all the people who helped me to edit the book. In
particular, [ am indebted to Steven Vajda for his advice and encouragement and |
would like to thank my colleagues Robert Simons and Bob Hattersley for their
advice on technical details about linear programming codes. I am also very
grateful to Bev Peberdy for her help in typing the manuscript. Finally, I would
like to express my thanks to Scicon Ltd for allowing me time to edit this book.

Lynne Mackley ( Scicon Ltd)
August 1987

A biographical memoir of E. M. L. Beale, by M. J. D. Powell, was published in
Volume 33 (1987) of Biographical Memoirs of Fellows of the Royal Society.
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1

Introduction

1.1 INTRODUCTION TO OPTIMIZATION

Optimization involves finding the best solution to a problem. Mathematically,
this means finding the minimum or maximum of a function of n variables,
f(xy,...,x,),say, where n may be any integer greater than zero. The function may
be unconstrained or it may be subject to certain constraints on the variables of the
function, say g;(x,,...,x,)= b, fori=1,...,m. We will see later that the functions
f(x) and g;(x) usually have some real physical meaning (for example, total cost
and profit or capacity and demand restrictions).

Although optimization is used in various branches of applied mathematics and
statistics it is particularly associated with operational research. Before discussing
what operational research involves, we will spend a few minutes distinguishing it
from statistics.

We can argue that statistics is concerned with trying to understand what is
happening (or what might happen) in an uncertain world full of apparently
random phenomena, and that operational research is concerned with deciding
what to do about it. If we make this distinction we must add that a practical
statistician must then spend some of his time practising operational research, and
that a practical operational research worker must spend some of his time
practising statistics. We may also add that the quality of the solution to any
practical problem may be impaired by dividing the problem up in this way.
However, such arbitrary divisions of problems into manageable components are
often necessary initial steps towards finding any solutions at all. So I believe
that this way of expressing the different approaches of these two major branches
of applicable mathematics is of some value.

Operational research is therefore concerned with decision making. This can be
an instinctive, or at least intuitive, process, but this is not always a satisfactory
way to make decisions, particularly those made on behalf of other people, for
example by a government department or a commercial organization. We may
therefore approach the situation more methodically, and list the alternative
possible decisions and their respective advantages and disadvantages. We may
then go further and quantify them, and this leads us to make what is generally
known as a mathematical model of the situation requiring a decision.
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Mathematical modelling is at the heart of operational research. This really just
means analysing some logical structure that is as simple as possible while still
representing the essence of the problem faced by the decision maker.

Let us take a trivial example. Suppose that I take seriously the problem of
whether or not to take a raincoat when I leave home in the morning to go to work.
Let us suppose that it is not raining, but that I do not want to get wet coming
home in the evening. On the other hand, I dislike spending time finding and
carrying my raincoat if it is not going to rain. Then I could represent all possible
events in the coming day by just two possibilities: wet in the evening or dry in the
evening. Then I could try to assess the probabilities of these two alternatives, and
[ could also try to assess the relative inconveniences of not having a raincoat if it is
wet and of carrying one if it is dry. By multiplying the relative inconveniences by
the corresponding probabilities, I can decide which action to take.

This is an example of a mathematical model. Like many such models, it does
not involve any deep mathematical techniques; but it seems fair to call it
mathematical, since it is concerned with expressing the logic of the situation in a
formal way.

There are three things that are worth noting about this model, because they are
typical of real operational research models. The first is that we do not try to make
the model as realistic as possible. I could easily make the model more realistic. For
example, I could consider a range of possible intensities of rainfall, which would
affect the amount of inconvenience in not having my raincoat, and I could
consider a range of possible temperatures, which would affect the amount of
inconvenience in having my raincoat if it is fine. I could also enlarge on the set of
possible decisions. For example, if it is raining when I leave work I could run to
the bus shelter and plan to stay there until it stops; or I could consider listening to
the weather forecast before making my original decision.

Now any or all of these extensions of the model may turn it into a more effective
aid to decision making. However, they might equally lead me into a worse state of
confusion than my original simple model, perhaps because I have no confidence
in any possible way of assessing the probabilities of different temperatures or
amounts of rainfall. Just as the problem for which the model is developed is one of
finding the best compromise between partially conflicting objectives, so the art of
model building itself is one of finding the best compromise between realistically
representing the situation and being able to collect data easily and draw
conclusions from the results.

The next thing to note is that the use of the model involves optimization. I want
to know what is best for me, so I choose my decision to minimize the expected
inconvenience. In this case the optimization problem is mathematically rather
trivial: there are only two possible decisions, so I can compute the expected
inconvenience from each, and choose the smaller. However, other problems
involve quantitative variables, such as how much of some material to make, or for
how long to operate a machine. These problems may require numerical
techniques for finding maxima or minima, as well as skill in model building. In
this book we will concentrate on these numerical techniques, while giving some
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thought to model building. It is important for model builders to know a fair
amount about optimization techniques, even if they can use existing computer
programs to implement them. This is because of the need to compromise in model
building between realism and ease of use. We can only do this if we have a fair idea
of the numerical problems involved in solving any model.

The third point to be made about this and many other models is that their value
is not so much that they give the best answer to the problem —which, of course, is
only true to the extent that the model is valid—it is much more that the model
provides a convenient framework for constructive thought about the problem. In
the simplest form of the raincoat model we see two ingredients: the probabilities
of certain events and the value of different outcomes in each circumstance. This
may lead us on to more elaborate versions of the model if we are dissatisfied with
the alternatives offered to us by the simple model.

In practice we often need to see the numerical solution to the model to help us
to realize that the data are incomplete or incorrect. This makes the techniques for
computing the solutions very important: to solve a real problem we may need to
compute the answers to a number of alternative mathematical models, in which
case we cannot afford to take too long solving any of them.

1.2 BASIC THEORETICAL NOTIONS

Before we begin studying optimization techniques it is worth spending some time
defining the mathematical concepts which are used in the course of this book. In
most cases detailed knowledge of these concepts will not be needed and an
understanding of the definitions given below will suffice.

The point x* in the region R is said to be a local maximizer of the function f(x),
subject to xeR, if there exists a small positive number ¢ such that

f(x*) = f(x)

for all xeR which satisfy ||x* —x|| <e. The value of f(x*) is then the
corresponding local maximum. The symbol € is standard mathematical notation,
meaning ‘is a member of” or ‘belongs to’. The norm, or distance measure, is not
particularly important. We may use the Euclidean norm, where

1/2
uxu:<z_xf>

The point x* is a global maximizer of the function f(x), where xeR, if

f(x*) = f(x)

for all xeR. The value of f(x*) is then the global maximum of the function f(x) in
the region R.

Definitions of local and global minima follow in the same way, replacing > by
< in the obvious places. Otherwise we can say that f(x) has a local or global
minimum if and only if — f(x) has a local or global maximum.
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Certain optimization techniques——generally known as hill-climbing
techniques—start with an estimate of the global maximum of the function and
repeatedly try to improve upon it by finding other points which have a greater
function value than the current estimate. The existence of local maxima that are
not also global maxima is clearly an undesirable hazard for these optimization
techniques, since it is possible that the methods will converge to a local maximizer
instead of a global maximizer. Therefore we will consider some important
circumstances in which local maxima must also be global maxima.

The most usual such circumstances are connected with the notions of convexity
and concavity. A region R is defined to be a convex region if the point

(I —=0)x, + 0x, 0<bO<1)

is always in the region, providing the points x, and x, also belong to it. A convex
function is one that is never underestimated by linear interpolation, i.e. if

x=(1—0)x, + 0x, 0<b<1)
then
JX)<(1=0)f(x;)+0f(xy)

If this inequality holds with strict inequality, i.e. < rather than <, the function is
said to be strictly convex. A function f(x)is concave if and only if — f(x) is convex.
Similarly, f(x) is strictly concave if and only if — f(x) is strictly convex.

Note that a linear function is both convex and concave, and also that a twice-
differentiable function f(x) of a single variable is convex if and only if

/(%) =0

everywhere, where f”(x) is the second derivative of f(x). Similarly, a twice-
differentiable function of n variables f(x,,..., x,) is convex if its matrix of second
partial derivatives is positive semi-definite everywhere. In other words,

sTAs >0 (for all vectors s #0) (1.2.1)

where

62f (’:/Zf‘ aZf
0x? 0x,0x, 0x,0x,
o2 f 0 f o f

A =] 0x,0x, @ méxzt?x,,

pr B @y

0x,0x, 0x,0x,  0x2

This matrix of second partial derivatives is commonly known as the Hessian
matrix. A matrix A is said to be positive definite if equation (1.2.1) holds with strict
inequality.

The main importance of convexity comes from the following proposition. If the
region R is convex and f(x) is a convex function in R, then any local minimizer x*
of f(x) in R is also a global minimizer.
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To prove this, observe that if it were not so, there must exist a point X in R such
that

f(xg) < f(x*)
So this means that, since R is a convex region, the points given by
x = (1 — 0)x* + Oxg 0<O<1)
must also belong to R. Also since f(x) is a convex function we know that

Jx) <1 =0)f(x*)+0f(xg)

which in turn implies that f(x) < f(x*)for all 6. However, as ¢ tends towards zero,
so the point x tends towards x*, whxch contradicts the hypothesis that there must
exist a positive ¢ such that f(x) > f(x*) for all x such that ||x — x* || < e. Hence it
must be true that a local minimizer ofa convex function in a convex region is also
a global minimizer.

An immediate corollary of this is that a local maximizer of a concave function
in a convex region must also be a global maximizer. By definition, the actual value
of the global maximum must be unique. However, it does not follow that the
global maximizer must be unique; multiple global maximizers are possible.

Turning now to more general functions, the Taylor series for a continuous
function f(x) of a single variable x, with continuous derivatives f’(x), f"(x)...ina
given interval a < x < b, is defined to be

2
19 = f(@) +~-lu (f—l/“( Vb o

or, equivalently,

. i X x?
fla+x)= fla)+ i*;_f'(ﬂ) Fard (@)t v

If f(x)is a function of n variables then the Taylor series, expanded around a point
X,, Written in matrix notation becomes

F(x)= f(Xo) + €T (x — Xo) + 5(x — Xo)TA(X — Xo) + -+

where the elements of the vector ¢ are the first-order partial derivatives ¢ f/dx;
evaluated at the point x,, and where the matrix A is the Hessian matrix, also
evaluated at the point x,.

Note that the Hessian matrix is a square matrix because it has the same number
of rows and columns. It is also symmetric. Writing a;; as the ijth element of A, this
means that

= aji (for all i, j)
or, alternatively,
A=AT

A diagonal matrix is a square matrix which has zero elements everywhere
except for the leading diagonal, ie. a;;=0 for i #j. A special example of a
diagonal matrix is the unit matrix, which has all its diagonal elements equal to
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one. The unit matrix is usually denoted by the symbol I. For example,

1 00
I=10 1 O
0 0 1

If the matrix is a square one such that all the elements above the leading diagonal
are zero, it is known as a lower triangular matrix. Similarly, an upper triangular
matrix is one where all the elements below the leading diagonal are equal to zero.

The following useful inequality, known as Cauchy’s inequality, is referred to in
Section 4.4 on quasi-Newton methods:

2
PRCHDNGE B ( Y x,,v,)
or equivalently in matrix notation:
x"xy’y = (xTy)" (x"y)

The number of ways of choosing r items from a group of n, where order is not
important, is called the number of combinations of n items taken r at a time and is
given by

n!
(n—r)r!

The number of possible combinations of n items is 2". For example, the possible
combinations of the three letters A, B, C are

None at all, A, B,C,AB,AC, BC, ABC

The number of permutations or arrangements of n items taken r at a time, where
order matters, is given by

n!

(n—r)!

Finally, computer rounding-off errors are referred to throughout this book.
These errors occur because most real numbers cannot be represented exactly on a

Table 1.2.1
Binary Decimal
Exact (to 8 binary representation
Fraction decimal places) of binary
A 2/5 0.4 0.01100110 0.39843750
B 3/5 0.6 0.10011001 0.59765625

A+B 1 1.0 0.11111111 0.99609375
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computer. Computers store numbers in base 2 (binary) rather than base 10
(decimal). Each number is represented as a binary fraction, called the mantissa,
multiplied by 2 raised to the power of some number, the exponent. The mantissa
is a string of binary digits (zero or one) which is truncated after a certain number
of places (typically 26). Table 1.2.1 shows an example of the large rounding-off
errors that arise when the two fractions 2/5 and 3/5 are stored as binary numbers,
truncated after only 8 places.
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UNCONSTRAINED OPTIMIZATION



oA EE, B B SE #EPDFIE V7 0] ;. www. ertongbook. com



