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PREFACE

The purpose of this lecture note is to study the Cauchy transform on curves
and analytic capacity. For a compact set I in the complex plane G, HW(FC)
denotes the Banach space of bounded analytic functions in CU{x}-T (= %) with

supremum norm EE The analytic capacity of T is defined by

v(r) = sup{|f' (=) |; £l <1, fer (T},

where f'(=) = limzam z(f(z)-f(»)). We also define

v (1) = supl(1/2m)1 du; [|Cully= < 1, Cuer™ (%), u z o},

where

Cu(z) (1/27i) s 1/(z-z) du(z) (z ¢(the support of u)).

We are concerned with estimatirg y(+) and y+(°). To do this, compact sets having

finite l-dimension Hausdorff measure are critical. Hence we assume that [ 1is a

finite union of mutually disjoint smooth arcs. Let i- denote the l-dimension
Hausdorff measure (the generalized length). Let LP(F) (lgpge) denote the LP
space of functions on I with respect to the length element |dz|, and let

Li(T) denote the weak L1 space of functions on T. Put
p(r) = inf v(E)/|E|, o (T) = inf v (E)/[E],

where the infimums are taken over all compact sets E in T[I. The Cauchy(-Hilbert)

transform on T 1is defined by

HLf(z) = (1/m) p.v. [ £(2)/(c-2) jdz | (zeT).

T
Then we see that

1/3

o+(F) < o(T) < Const p+(T) , Const o+(F) < I/HHTIkl < Const p+(F),

(M,Lh (M
where ”HF|RI(F),L1(T) is the norm of HF as an operator from LI(F) to Li(r)
(Theorem D). Hence the study of (') 1is closely related to the study of HF'
Here is a history of the study of the Cauchy transform on Lipschitz graphs.
According to Professor Igari, the L2 boundedness of the Cauchy transform on
Lipschitz graphs was first conjectured by Professor Zygmund in his lecture at
Orsay in 1960's. Let T = {(x,A(x)); x €R}, a(x) = A'(x), where R 1is the real
line. Let C[a] denote the singular integral operator defined by a kernel
1/{(x-y)+i(A(x)-A(y))}. Then the above conjecture means the following assertion:
Cla] 1is bounded (from L2(R) to itself) if ae Lw(R). The operator Cla] is
formally expanded in the following form: (-m)H + Z;;O(—i)n Tn[a]’ where H is

the Hilbert transform and Tn[a] is the singular integral operator defined by a



v

kernel (A(x)—A(x))n/(x—y)n+l. In 1965, Calderén [3] showed that Tl[a] is
bounded if ae,Lw(R) (Theorem A). This theorem is very important and closely
related to the BMO(R) theory, where BMO(R) 1is the Banach space, modulo constants,
of functions on R of bounded mean oscillation. Coifman-Meyer [8], [9] studied
Tn[a], Calderén [4] showed that C[a] is bounded if ”a”Lw(R) is sufficiently
small, and consequently Coifman-McIntosh-Meyer [7] solved the above conjecture in
the affirmative (Theorem B). David [17] studied HF for continuous curves TI. It

is already known [44] that “C[a]”LZ(R) LZ(R) < Const(l + YTall (Theorem C)

BMO(R))
and that the square root is best possible [18]. Jones-Semmes gives a simple proof
of Theorem B by complex variable methods. (See Appendix II1.)

As a first step of the study of HF for discontinuous curves T, we begin
with a review of the study of C[a]. 1In CHAP. I, 8 proofs of Theorem A will be
given. Once this theorem is known, we can easily deduce Theorem B (cf. CHAP. II),
and hence Theorem A is very important in the study of C[a]. As is easily seen,

if f, ge LZ(R) have analytic extensions f(z), g(z) to the upper half plane

4o 8(iy) = 0), then the Poisson extension of

(such that limy%m f(iy) = limy
(fg) (x) to the upper half plane is identical with f(z)g(z). This simple property
of analytic functions is essential in a proof of Theorem A by complex variable
methods. We shall give, in CHAP. I, various interpretations of this property from
the point of view of real analysis (cf. Coifman-Meyer-Stein [13]). These proofs
are, of course, mutually very close, but each proof has proper applications and is
interesting in itself.

In CHAP. II, we shall give the proofs of Theorems B and C by perturbation. Our
method is an improvement of Calderén's perturbation [4] and David's perturbation

[17]. Put
o(clal) = sup(1/[1))/ [clal () () | ax,

where X1 is the characteristic function of I and the supremum is taken over all
intervals I and all real-valued functions f with Hf“Lm(R) < 1. This quantity

is comparable to HC[a and convenient for our perturbation.

J “L"“(m) , BMO (R)
Considering a suitable Calderén-Zygmund decomposition of a primitive A(x) of a(x)
on I, we obtain an a-priori estimate of (l/il‘)fllc[a](xlf)(x)| dx by moderate
graphs. (See the figure in § 2.2.) Repeating this argument infinitely many times
and estimating infinitely many error terms, we see that the boundedness of C[a]

is consequently reduced to the boundedness of H. For the proof, Theorem A is
necessary. We shall also give a proof of Theorem A by perturbation [45]. Tools

which we use are only the Calder6n-Zygmund decomposition and the covering lemma.

For the proof of Theorem C, we put
Seclal) = sup/ 1)/ felal (0 (0 [? £ ax,

where the supremum is taken over all intervals I and all real-valued functions



v

f with 0 < f < 1. Then o(C[a])2 < Const g(Cla]). Since

II C[aJ(XLf)(x)f(x) dx = 0, this quantity behaves like a linear functional of
a(x), and this gives an a-priori estimate better than o¢(C[a]). Our method is not
short but very simple, and this is applicable to various kernels.

In CHAP. III, we shall study HF for discontinuous graphs T and shall
compare y(+) with integralgeometric quantities. We first give the proof of
Theorem D. As is well-known, planar Cantor sets are useful to construct various
examples (cf. Denjoy [23], Vitushkin [52]). Let QO = [0,1] % [0,1] and let Qn
(n21) be the union of 4" closed squares with sides of length 4™™ obtained from
Qn—l with each component of Qn—L replaced by four squares in the four corners of

the component. Put Q_ = r}::o Q.- Then y(Q_) = 0 and IQw] > 0 (Garnett [28]).

This shows that two classes of null sets of y(+) and are different. We shall

try to give grounds to this example. We may consider that Qn is a graph. (See the
figure in § 3.3.) Let TS (Sl,..,snegm) be the singular integral operator

gy S
defined by a kernel b n

1/ {(x-y)+i(A_ (x) - A (y) i,
S 5w s 538 Sis 4558
l! b n 1) 3 n
where ASl,'_’Sn(x) = s ((k=1)/n < x < k/n, l<k<n) and ASl,.-’sU(X) =0
(x€ [0,1)). Then we see that
max{o (T ); s.,..,s_€R}
S.y..,8 1 n
1 n

is comparable to Vlog(n+l) (Theorem G), and, if we neglect constant multiples,

an n-tuple (58""32) obtained from a graph {(x,ASO So(x)); x € [0,1)} similar
to Qm (m = (the integral part of (log n)/4)) is a ;éi;t?on of this extremal
problem. Hence planar Cantor sets are worst curves in a sense. We shall also
generalize Qn' A segument ]0,1) 1is called a (thick) crank of degree 0 and a
finite union ' of segments parallel to the x-axis is called a (thick) crank of
degree n, if Tn is obtained from a crank Fn—l of degree n-1 with each

component J of T replaced by a finite number of segments Jl,..,

e JZP
(p=p(J)) parallel to the x-axis such that iJki = 2 lei, the distance between
Ji and J is less than or equal to 2_prL (1
these segments to R are mutually disjoint and contained in the projection of J.

A

k < 2Py and the projections of

~ . ‘Te ' =) 2 § < s
We shall show that, for any crank T of degree n, HHT“L (F),Lz(F) < Const Vn
and that this estimate is best possible (Theorem E). To prove this, we define n+l
singular integral operators {Tk};=0 such that T, = (-m)H,
n . _ y . n . . .
”Zkzo lk“LZ(R),LZ(R) hHP“LZ(T),LZ(F) and {Tk}k=0 are mutually almost

orthogonal. Hence we see that the meaning of /n is the central limit theorem.

We define integralgeometric quantities Cra(-) (0<@<l) as follows. Let
D(z,r) be the open disk of center =z and radius r. For a compact set E,
NE(Y,S) (r>0,|0|§ﬂ) denotes the (cardinal) number of elements of ENL(r,0),
where L(r,0) is the straight line defined by the equation x cos 6§ + y sin 6 = r.

We put



VI

cr (B) = lim_ CriE)(E),

-0

crée)(E) = inf f_;{f; N (r,8)% dr} d&  (e>0),

3WUg- D751 )}
where B{Ljﬂle(Zk,rk)} is the boundary of LJE=1D(Zk’rk) and the infimum is
taken over all finite coverings {D(zk,rk)}rkL1 of E with radii less than e.
Since y(E) < Const Crl(E), it is interesting to compare vy(+) with Cra(')

(cf. Marshall [37]). As an application of Theorem E, we shall show that, for
0<a<l/2, there exists a compact set EOl such that Y(Ea) =1 and Cra(Ea) =0
(Theorem F). For the proof, we use a branching process. Let {Xn}:=l be a
sequence of independent random variables on the standard probability space
([0,1),B,Prob) such that Prob(Xrl =%1) =1/2 (nzl), and let SO =0,

S, = ZE=1 X, (nzl). We define a Galton-Watson process {yn}:=0 by ya(x) =1,
o) =y (x) + Syn_l(x)(x) (nz1). Then we see that, for n2l, there exists

a crank Tn of degree n such that Cru(Fn) is comparable to Z§=Oku Prob(yn=k).

1-a

This quantity is comparable to 1/n Using the difference of order between

1/vn (the central limit theorem) and 1/nl_q

(the Galton-Watson process), we
construct the required set E

I express my hearty thanks to Professors M.Ohtsuka, R.R.Coifman, P.W.Jones
who gave me the chance to lecture during the academic year 1986-1987, and I am
grateful to Professors S.Kakutani, T.Tamagawa, J.Garnett, S.Semmes, T.Steger,
G.David, C.Bishop for their variable comments and suggestions. I especially
express my appreciation to Professor W.H.J.Fuchs for his encouragement. I also

thank to Mrs. Mel D. for typing the manuscript. This note is dedicated to the

memory of my mother who died while I was staying at Yale University.

New Haven, July, 1987



CONTENTS

CHAPTER 1. The Calderdén commutator ( 8 proofs of its boundedness) ........... 1
1.1. Calderon's thEOTEM wesmsamiams sms s Ge s a s e osm s eess®es sy e s o 1
1.2. PEGOE OF (Lo3D nreiwmnwsmim s Bum o mon s ioum 8 wus 6ol 5 s a o 3 90 5 5 61 9 5 30 45190 8 548 & GG 1
1.3. Area Integral «.uiiiiii e intirietat et et 2
1.4. Good A Inequalities ...eeuieiiin it iniieinieeerrontantennesnanns 4
1.5. BMO tiiteeettereensennesessnsacresocacansasotonsssassassanasnsoas 6
1.6. The Coifman-Meyer eXpression ......eeeevennrenececnnnnnracenaenns 9
1.7. A LENL SPEACE 4ttt ennresoseonesasesnsassossosstanssnssnsnssns 11
1.8. The McIntosh expression ...uiieeeeiieeenrtineneennennsenassonnens 13
1.9. BIlmost OFPTNOEONALIET v vmimrosirmms subio omsiondd g o 306 8850 8 a0 8 6m s a8 90 15
1.10. InterpOlatiofn uuueeeeeeeeeseesnooesosonssneasssosssaannsnsnannssans 21
1.11. Successive compositions of kernels .......cciiiiiiiiiinnennnnnnnn 24
CHAPTER IT. A real variable method for the Cauchy transform on graphs ...... 31
2.1 Coifman-McIntosh-Meyer's theorem ...iuovieiiiiinenneernneeannnens 31
2.2, Twd basiie. PrinEiplien . w e e cem « s s s e o wm o e o o0 o s o oo e w o o s wim « e 32
2.3. O—FUNCELOT s ms s smim s s esmsems e s i e @ s s s o s oes o neosews s 35
2.4, A-priord eBLIMALEB. wvusss oo o s sm e o xmm s s wim e oms e s w8 e 6 e e e wse 39
2.5 Proof of Theorem A by perturbation .......c.ceeiiieieeeeriennnnnnnn 47
2.6. Proof of Theorem B by perturbation ....eeeeiireriiiieenneeneenans 50
2.7. Estimates of norms of E[+] and ,C[*] civrerminnnnnnreeenannns 53
V. Proof 0f (2.38) tiiiiiiienineeeeeeeeenenaeeeeesasnennnseanesnnns 55
2,9, Proof ©f (2:39) wesmvsmesmesmsememes oo s qs eesmes s eesmeens e s me 61
2:.10. dApplication of (2.38) ssswscwsswismsmgsousmvs vsgwvsmes wasmssmsae 68
CHAPTER IIT. Analytic capacities of cranks ...civeivienieeimocnnineenmsacoonens 71
3.1. Relation betweeny V) @t H o iom s s auos oy s a s s ososems o s s 71
3.2. Vitushkin's example, Garnett's example, Calderdén's problem
and extremal Problems « . vae s se s om s s s wus e s e en o e me s m e s o e e 79
3.8, The Cauvchy transform on @ranks o« ew e sw s s s o s ms e s om s ow v ome vie s o 83
3ob. Proof of the latter half of Theorem E ..vieeeieervieeronrenoonans 91
35 Analytic capacities of fat cranks v.viceceocevnenceocncanncoesos 99
3.6. Analytic capacity and integralgeometric quantities ............ 105
3 ¥ Proof of Theorem F .. eerirenennnonnaatoenesaanssnnssnsnnes 112
APPENDIX TI. An extremal Problem .o vsevewsas o sconsovsseemesmsses s s ons s 11s
APPENDIX II. Proef of Theorem B by P.W.Jones=5 .Bemmes. «.veeuw cowsmm s nms win s we 126
REFERENCES 4 s iw w0 5 o1 6 0 560 5 im0 8w @ ol & ta0es o w1i6s & foist ‘o @ 5o1 0 ' fo0 & » i85 9 @ w44 507 o, 6 <97 w WEiwt o aiiw) 9, wwe Wiy 9 ap.o 129
SUBJECT THNDEX: « wa g o5 oo ¢ e wis s g ¢ oo o e & o0 § @ras 6 % & 6 0 a6 @0 6 % (o1 & & @ 8 @i » w6t o w0385 8 @slet ‘s i # corie 132



CHAPTER I. THE CALDERGN COMMUTATOR
(8 PROOFS OF ITS BOUNDEDNESS)

§1.1. calderdn's Theorem (Calderdn [3])

Let LP (1= ps «) denote the LP space on the real line R with respect
to the l-dimension Lebesgue measure |+*|. Its norm is denoted by H-”p- Let BMO

denote the Banach space, modulo constants, of functions f on R such that

HfHBMO sup(1/]1]) fIff(x)—(f)Ildx is finite, where the supremum is taken over all
(finite) intervals I and (f)I is the mean of f over I. For a € Lw, we

define a kernel
(1.1) Tlal(x,y) = {AG) - A} /(x-n)2,

where A 1is a primitive of a. We write simply by T[a] the operator from L2 to

itself defined by the above kernel, i.e.,

(1.2) Tla]lf(x) = lim
e >0

f\x—y| - T[a](x,y)£(y)dy.

Calderdén showed

Theorem A ([3]). For any f € L2, Tla]f(x) exists a.e.

(1.3) Wa”m < Const HT[a]HZ 2

and
(1.4) ilT[a]‘lz’2 < Const Wa”m s

where [|T[a]ll is the norm of T[a] (as an operator from L2 to itself).

2,2
In §1.2, we show (1.3). In §1.3-1.11, we show various proofs of (1.4).

§1.2. Proof of (1.3) (Coifman-Rochberg-Weiss [15])

For a set E C R, XE denotes the characteristic function of E. We put

o (x) = |fI {r; (A(s)-A(t))dt}ds| (x €R, & > 0),

+e =g

. 3 _
where I+5 = (x, xte), I_6 = (x-¢, x). Then llma_’0 QE/E = Const |a| a.e.

We have, for almost all X,



o 0 = |y Up Tlals,) {(s=07 + 2(s-x) (e-t) + (-0)%} de} d]
+e —€

A

F1 [(S-X)Z)T[a] X
+e

I (s)| + 2|s~x| |T[a] {(x—-)XI }(s)
- -
#lTal{ =2 %, ) ()] as
-€
< Const[55/2]|T[a]XI |+ 53/2 HT[a]{(x--)XI H
L2 o2

+ oM el e ]
—€

5/2 I +53/2

s Conmst [IT(alll, , {e IIXI_6 “(X">X1_E“2
1/2 3
+ e ¥ )&1—5”2} = const|Tlall, , & ,
and hence
- i 3
|a] = Const lim p /e~ = Const||T[a]ll a.e.
€ 2,2

e+ 0

Thus we obtain (1.3).

§1.3. Area integral ([3])

In this section we show the proof of (1.4) by Calderdn. Let C. denote the

0
totality of infinitely differentiable functions with compact support, (°,:) denote
the inner product and Ye =X c (e > 0). Given real-valued functions a,f,g
- (-e,¢e)

in C0 and e > 0, we estimate

(T%[alg,f) = f__T¢[alg(x)f(x)dx,
where Te[a] is an operator defined by a kernel Ys(x_Y) T[a](x,y). We may
assume that A(x) = ff a(s)ds. Then A(x) = f_: e(x-s)a(s)ds, where
e = X[O,w)' We have

(T"[alg,£) = f_ae) [ f_ s — 5 {elxs)-e(y-s)}g(y) f(x)dydx]ds.

(x-y)
Set
0
I S 1¢65) >
ft(Z) = 1 e —z dx Im z {

<0

We denote also by f (x) (x € R) the non-tangential limit of £, (z), respectively.
We define analogously gt(z), gt(x). Then f = f+ -f, g= g, = 8.

e, = IEl, and llglly = lgll,. Let



Ko(6,y58) = ¥_(ey) {e(x=s)-e(y-9)} /G-y,
K (6,y,8) = fe(x-s)-e(y-s)} /(x-y * ie)’,
K,(x,y,s) = e/{(x=9)? + (-7 + 22

&
Then |Ky(x,y,8) - K (x,y,8)| = Const K,(x,y,s). We have

|(15alg, ) = | /2 a(s)[ J_, Ky(x,y,8){g, (¥) - g_(y)} £(x)dydx] ds|

A

152 ) 1.2 KL (x,y,9)8, (0 E(x)dydx] ds]

+ |f~: a(s)[ [_ KI(X,y,S)g_(y)f(x)dydx] ds|

+ Const [ |a(s)| [/_D Ky(x,y,8) {lg, (| + [e_( |} £ dydxlds
(= ]f_: a(s) k;(s)ds| + |f_: a(s)kI(s)ds| + Const f_: ]a(s)|k2(s)ds,say).

We now estimate ki(s), kz(s). We have

Ki(s) = £ {70 K (oy,9)8,(dy} dx

- & g, () - g, (y)
= S Ex) felx=s) J_, ———F dy - J —— 5 dy } dx
(x-y-ie) (x-y-ie)
=i S [ g, (s+1t)/{(x-is)~(s+i0)}’ dt] dx
=S e (srin) [T £G0/{Gmte)=(s*in) ) dx] de
= on f; £](s+i(t+e))g, (s+it) dt.
Let
F(z) = -1 f; £1(z+i(tte)) g, (z+it) At (z € V),
where U= {(x,y); x €R, y > 0} . Then F is analytic in U and the non-

+
tangential limit F(s) equals (1/2ni) kl(s). Here is a main lemma necessary for

2
the proof of(1.4). Let Py(x) be the Poisson kernel, i.e., Py(x) = y/{n(x2+y )}
For a differentiable function v(x,y) in U, we write

|vvix,y)| = {Iav/axl2 + Iav/ayl2 }1/2.

Lemma 1.1 ([3]). For v € Ll, we define

AW (x) = (/S lvem|? & art’? xem,
A(x)



where v(E,)) =P * v(E) and A(x) = {E/n); |& - x| <M} . Then
Ivlly s const Al .
Once this lemma is known, (1.4) is deduced as follows. Since
F'(2) = £(z + ie)g,(z), we have A(F)(s) = A(f))(s)m(g)(s) =
Const A(f,)(s) Mg, (s), where m(g)(s) = supl|g, Em)I;Em) € 8(0} and
M is the non-centered maximal operator (Journé [35, p.6]). (See Lemma 2.3.)
We have HMg+H2 < ConstHg+H2 . Green's formula shows that HA(f+)H2 = Const”f+H2.

Thus we have, by Lemma 1.1,

IA

> a(s)k;(s)dsl s 2 [all, IFll; = constllal, lla(R)I

A
IA

| .1
Const [lall, ACEDI, Im(g )], = Const llall £ 1, g,

IA

Const [[all [I£ll, Ilgll, -

In the same manner, we have |f_: a(s)k{(s)ds| < Const HaHm Hsz HgHz

Vix=e)? 4 5°
5 5— e, () +e_(»)|}dyldx
(x=8) +(y-s) "+ ¢

We have

A

kK (s) s f " —t £ [
2 —o0 (X_S)2+ 52 —o

IA

Const ME(s) Mg, (s) + Mg_(s)} ,
and hence
I la(s) [k,(s) ds = Const [lal_ [Ifll, lgll, -

Consequently |(TE[a]g,f)f < Const HaHm HfH2 HgHz . Since f,g € C., £>0 are
arbitrary, we have (1.4) for a € C; .

* o
(1.4) from the boundedness of maximal operators T [b] (b € CO) and Fatou's lemma.

In the general case, we can deduce

(See Lemma 2.5.)
§1.4. Good A\ 1inequalities ([2], [26], [48])

In this section we give the proof of Lemma 1.1 by the so-called '"good X\
inequalities". We put m(v)(x) = sup{|v(x,y)|; v > 0}. Fixing a sufficiently large

T, we prove

(1.5 |x; m(v)(x) > T , AW (x) = AT |

< (Const/rz) |x; m(x) > A (A > 0).
Let W) = {x; m(x) > A}, B5(\) = |[W(\)| . Then we can write W(X\) = U:=l Ik
with a sequence MX = {Ik} of mutually disjoint open intervals. It is

sufficient to show that, for each I € MX 5

(1.6) |E |= (Const/12)|I|,



where E = {x € I; m(v)(x) > T , A(v)(x) £ \/t}. To do this we may assume that
A(VY(E) = A/t for some £ €I; otherwise E =@. Since A(v)(E) = A/T , we have,
for any x € I, yz 2|I],

IA

(1.7) |v(a,y) - v(x,y)| £ Const A(v)(E) < Const /T ,

where a 1is the left endpoint of TI. We choose T large enough so that the last
quantity in (1.7) is less than A . Since ;(v)(a) < \, we have

[v(x,y)| = 2x (x € I, y 2 2|1|). Hence, for any x € E, there exists 0 < Yy < 2| 1|
such that |v(x,yx)i = sup{|v(,y) |5 v > yX} = TA. Let

IG) = (= (0, /5), %+ (3,/5)), TGO = {E,y s |- x| < v, /10} (x € B). Then,
for any (E,yx) € J(x), we have |v(£,yx)| = |v(x,yx)| - Const A(v)(x) 2

TN - Const A/t = T A/2. There exist a finite number of mutually disjoint
intervals ~{J(XH)} such that |E| = 52 |J(XM)| . (See §2.2;) Let
R=0Q)NUax), where Qp={Em;& €1, 0<n<21]}, a0 = {E;
g - XH' < n/10, n > Yy } . Green's formula shows that

W

2
e 5 (D - g2y g s conse i n vl @ an,
3R R

where 3/3n 1is the inner normal derivative and ds is the length element. Let
1/2

AW = Uf vv]? @& an} 2, wnere %GO = (&) |&x| < n/10}
A (x)NR

IA

Then a geometric observation shows that AR(V)(X) = A(v)(xv) = A/t , where x
is a point which is nearest to x in {xu}. Hence the right-hand side of (1.8) is

dominated by:
2 2
Const _/'I AR(V)(X) dx = Const (\/7) |I\ < Const A\ 11].

We divide dR into the following three parts: aRO = 3R NU J<Xu)’
aR; = {(&,m); & €I, n =2|I|]}, B8R, =2aR - (3R U 3R;). Note that
n|V V(E,n)| < Const MT on aR. By the definition of Yy (x € E), we have, for

any (£,n) € 3R, |v(8,m)| = 1\ + Const X/t = Comst v\ . Thus

Q

.
N

[o 9

]

A

Comst o n|ov||v| ds

s Const (A/T) TA g ds = Comst K 1.

Since |v(E,m)| = Const X on 3R, we have |r o |v|2 ds| = Const 32 [1].
oR, on
o ]V|2 ds = Const )\ |T|. Since

These estimates yield thatfaROUaR2 v

an/an =z 0 on aR,, an/an = 1 on 3R, and [v(g,m)| =z *\/2 on 3R, we have



252 am 2. an 2, < 2
< =L < — < A
T\ E| = ConstfaRO o |v| “ds = Const:faROUaRz 3n | v| “ds = const l1l,
which shows (1.6). Consequently (1.5) holds.

By (1.5), we have, with a constant CO,
(1.9) 5(\) = 50/T) + (Cyltd) 5O,

where &) = [x; A(v) (x) > XI. We now choose T = 2 CO and integrate each
quantity in (1.9) by d\ from O to infinity. Then we obtain
Hm(v)”l < Const HA(V)Hl, which gives Hle < Const HA(V)“I- This completes the

proof of Lemma 1.1.

§1.5. BMO (Fefferman-Stein [27])

Theorem A is closely related to the theory of BMO [27]. 1In this section, we show
the proof of Theorem A by Fefferman-Stein., We say that a non-negative measure

du(x,y) 1in U 1is a Carleson measure with constant B if

I du(x,y) = B |1I]
I x(0,]1])

for any interval I ¢ R. The following two facts are elementary.

Lemma 1.2 ([27]). Let a € BMO. Then y|V a(x,y)l2 dx dy 1is a Carleson measure
2

with constant Const ”aHBMO

, where a(x,y) = Py * a(x).
Proof. Given an interval I, we put

2P 6o = (a0 - @ % 60, 2P = @ - @ X, 6,
I I

*
where (a)I = (1/]1]) II a(y)dy and I 1is the double of I, i.e., the (open)

interval of the same midpoint as I and of length 2|I|. Then

a(x,y) = Py * a(l)(x) + Py * a(z)(x) + (a)I

(= 2Py +aP ey + @), say.

John-Nirenberg's inequality [32] shows that ]Ia(l)H2 < Const Ha”BMO V| .

(See Lemma 2.5.) Hence we have, with I = I X (0,|I|),

1 2 1 2
Iy lva( )(x.y)l dx dy = Jf ¥ IVa( )(x,y)l dx dy
I U
B (1) 2 2
= Const |la ”2 < Const ”aHBMO [1].
Note that |(a)I. - (a)I| < Const J”aHBMO (i =z 1), where Ij is the interval of

the same midpoint as I and of length 2J|I|. We have, for (x,y) €I



|Va(2)(x,y)| < Const [ " ——~£*§- |a(2)(s)|ds
I (x-s)
< Comst 3 lI.I_2 i la(y)-(a),| ds
=1 I, -1 I
Jj+l 73
< - -—2
= Const jil IIj| |Ij+l| {“a”BMO + |(a)Ij_ (a)I |}

const( = j 279) |l4
j=1

A

suo’ 1 11 -

and hence

NEH2 ff.y dx dy

.y IVa(Z)(x,y)I2 dx dy = Const(||al
1 I

BMO

A

BRI

2
< Const ”a”BMO

Thus

Iy |vaGoyy|? dx dy = const {17, v [va™ (1) ax dy
I I

2

O l1|. Q.E.D.

v 05y [a® 0| ? dx dyy = const |al
I

Lemma 1.3 ([35, p. 85]). Let du(x,y) be a Carleson measure with constant B.

Then, for any f € Lz,

00y 1EGay [ duxoy) = const BIENZ  (EGoy) = B % £60).

Proof. Let W(\) = {(x,y) € U; |[£(x,¥)| > A} , &) = ffw(x) du(x,y) (N> 0).

Then the left-hand side of our lemma is dominated by

Const f°0° A(N)AN . If  (x,y) € W(\), then
A= sup{}f(g,n)|; |x—£[ <N} =CcMfx) for some constant C. Hence W(\) is
contained in WO(X) =UTI x (0,|I|), where the union is taken over all components

I of {x; ME(x) > C\} . Thus
CCO R o) dup(x,y) = Blx; Mf(x) > C\| ,
0
which gives

fz A 8()d\ = B f; Ax; ME@x) > Cn|dh

A
IA

< Const B [M£|2 < const B £]2 . Q.E.D.

We now prove Theorem A. The Hilbert transform H is defined by

f(s) d

s
-x| > ¢ s-x

Hf(x)=% Lin f),
e >0



H(af)”2 s HaHmeHZ, it is sufficient

we will prove a better inequality.

For a, f € CO’ we have
(1.10) T[a]f(x) = -m H(af)(x) + m[A,H]f'(x),
where [A,H]f' = A(Hf') - H(Af'). Since |
to show that H[A,H]f'||2 < Const HanHfHZ 3
L}
(L.11) || [AH1€"], s Const lall o Il

Without loss of generality we may assume that

have, for any real-valued function g €

([a,HI£",8) =

oo

CO,

5

a, f are real-valued. We

[A,H]f'(x)g(x)dx = (A,Hf'-g + f'Hg)

=4 Im(A,f; g+) = 4 Im(A,F') = -4 Im(a,F),
where
(1.12) F(x) = fiw f;(s)g+(s)ds = —-i fz f;(x+is)g+(x+is)ds.
Let a(x,y) =P_* a(x,y), F(x,y) = Py * F(x). Since fi(z), g+(z) are analytic

. ﬂ _ ] . 7
in U, we have o (x,y) = f+(x+1y)g+(x+1y).

Parseval's formula yield that

| (a,F) ]| Const Ifo y (x,Yy)

Const |ff 'y
18]

IIA

Const {fo ylf_;_(x+iy)|2 dx dy}

IIA

const [1£,1l, llallgyg eyl

This completes the proof of Theorem A.

oF
ax

12

< Const | al

Thus Lemmas 1.2, 1.3 and

(x,y) dx dy]

(x,y)f;(x+iy)g+(x+iy) dx dy|

U7y 173Gy | e, Gerty) Pax ayy'/?

oo £l Tgll, -

Fefferman-Stein [27] showed also the following inequality, which is

essentially same as (1.11).
Lemma 1.4 ([27]).

Proof.
for any real-valued functions f£,g € C;,

([a,H])f,g) = (a, Hf-g + fHg) = -4 Im (a,f

Let G(x) = f+(x)g+(x).

G(x,y) = Py * G(x), a(x,y) = Py * a(x),

Let a € BMO. Then H[a,H]H2 9

Without loss of generality we may assume that

<

Const ”a”BMO :

a 1s real-yalued. We have,

48

Then Parseval's formula shows that, with



e) 3G
|(a,f+g+)| = | (a,G)| = Const |fo y gi-(x,y) 3x (6¥) dx dy

2

Lz Ury v 1vel? el ™ ax ay 32

< Const {fo y ]Va|2 |G| dx dy}

Since log]G(x,y)] is subharmonic in U,

V|G 2 1

A log |G| = (A,G| - G ) TE’— z 0,

and hence

2 2
VG ]G
S - alel + J‘#?S}L‘ < 24lc|.

This shows that

2 -
5r v jvel” 6™ ax ay s 2 Iy v 2G| dx dy = Const Il «
U
1./2
Since |G(x,y)| / is subharmonic in U, we have ]G(x,y)| < Py * (|G|l/2)(x)z.
Hence Lemmas 1.2 and 1.3 yield that
2 2 1/2 2
Wy |va(x,y)|"|6(x,y)| dx dy = 0y Y [va(x,y)| P, * (|G| / ) (x) “dx dy
< Const [Jal _ ¢ .
- BMO 1
Consequently, we have
| ([a,H]f,8) | = Const |lallgy,, lIGll; = Const llallyy, II£ll, lel,- Q.E.D

§1.6. The Coifman-Meyer expression (Coifman-Meyer [8])

It is important to understand Theorem A from the point of view of real
analysis. Coifman-Rochberg-Weiss [15] showed Lemma 1.4 without using analytic

functions. Coifman-Meyer gave the following expression.
Lemma 1.5 ([8]). [AH]E' (x)
= - Const f_: [a_s,H]fS(x)/(l+sz)ds (a € BMO, f € CZ),

/|x|l+is

where a =k *a, f =k *f, k (x) = & and
s s s s s s

8, = T((1#1s)/2)/ {r(-is/2) oy

Proof. We have, for a, f ¢ C;,
[ABIE' (o) = Const 1 /7 17 T VX fotgnn - signem)} 2B mEeag an

where a, f are the Fourier transform of a, f, respectively. Note that



{sign n - sign(&n)} (/&) = - {signn - sign(Em)} X 1y [n/E]). Since
In/g| =consts ™ In/&l *®/q+shHas  (In/El = 1),

A @ =k _®a® = ] TP AE ad £ = 11" f0), wve have
[A,H]f'(x) = - Const f_: [i f_: f_: ei(E"'ﬂ)x {signm - signE+rm)}

;_S(E) %S@)) dg dn]/(l+sz) ds = - Comst f_: [a_S,H]fs(x)/(l+sz)ds.

(In the case of a € BMO, f € CZ, it is necessary to show the convergence of
the quantity in the right-hand side of Lemma 1.5. This will be shown later in the

proof of Theorem A.) Q-E.Ds

Here is another lemma necessary for the proof of Theorem A.

Lemma 1.6 ([8]). Const(l + [s|3/4) || all

lagl gyo = BMO®

Proof. Without loss of generality we may assume that s > 0. We put

a(l) = (a-(a).) x , a(z) = (a- (a)_) X . (See Lemma 1.2.) Then
I T* I I*C
o = aél) + aéz), where aéj) = kS * a(J) (j = 1,2). John-Nirenberg's inequality
shows that Ha(l)H < Const] al V|I| , and hence
2 BMO
(1) (L _ (1)
UL ) ax = a7,V II] = llat I, VLl = comse llally, [0
Note that IES| < Const(l + Vs). In the same manner as in Lemma 1.2, we have,
with Xg = (the midpoint of TI),
2 2
h |a( )(x) = a( )(xo) | dx
I
e e “ 1 } 1 2
= vl ool o 1+is et )y | dx
1 |x—y| }xo-y|
. 1/4 1/4 1
s Comst {|E | (L + ')} [ [x-xy] U se — 373 )a(y)-(a)1|dy} dx
I I |-yl

Const (1 + 53/4) ”aHBMO |T].

A

Thus we obtain

(lag - (a9 D} = 2(Jag - aéz)(x0)|)I & Bomst (1% &> ™ llall

I BMO’

which gives the required inequality. Q- EDis

Theorem A is deduced from Lemmas 1.4-1.6 as follows. Inequality (1.10) shows

that it is sufficient to show that H[A,H]f'H2 < Const HaHmeHZ . Lemmas 1.4-1.6



