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Preface

Real analysis and complex analysis are fundamental in modern mathemat-
ical education at the graduate and advanced undergraduate levels. The
material covered in courses on those subjects has varied over the years.
The tendency has been toward periodic revisions reflecting a changing con-
sensus in the mathematical community. The aim of this book is to present
a modern approach to the subjects as they are currently viewed.

The reader is assumed to be familiar with such terms as continuity,
power series, uniform convergence and uniform continuity, derivative, Rie-
mann integral, etc. On the other hand, a considerable effort has been made
to provide, in the union of the text proper, the SYMBOL LIST, and the
GLOSSARY/INDEX, complete definitions of all mathematical concepts
introduced. The following notations obtain for assertions in formal logic:

{A} = {B} for A implies B
{A} & {B} for Aiff B
ANANB: for Aand B
AV B for A or B.

Among the novel and unique features of the text are the following.

In Chapter 1.

a) Topology discussed three ways: via open sets, via nets, and via
filters.

b) Two proofs of Brouwer’s Fixed Point Theorem.

¢) Uniform spaces.

In Chapter 2.

a) Integration viewed as a Daniell functional.

b) A detailed exploration of the connection between measure as de-
rived from a Daniell functional and classical Lebesgue-Caratheo-
dory measure.

¢) The Riesz Representation Theorem as a consequence of Daniell’s
approach.
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In Chapter 3.

a) Functional analysis and weak topologies.

b) Banach algebras.

¢) Axiomatics of Hilbert space and linear operators.

In Chapter 4.

a) The Fubini-Tonelli Theorems via Daniell’s techniques.

b) A unified approach to nonmeasurable sets.

c) Differentiation by direct methods that avoid parameters of regu-
larity, nicely shrinking sequences, etc.

d) Haar measure by Daniell functionals.

In Chapter 5.

a) Singular homology of the plane via the formulee and theorems of
Cauchy.

b) Elementary exterior calculus as applied to complex function the-
ory.

In Chapter 6.

a) Subharmonic functions, barriers, and Perron’s approach to Dirich-
let’s problem.

b) Poisson’s kernels and approximate identities in Banach algebras.

In Chapter 7.

a) Runge’s Theorem and its application to Mittag-Leffler’s Theorem;
the latter as a source of Weierestrafy’s product representation.

b) Entire functions and their orders of growth.

In Chapter 8.

a) Riemann’s Mapping Theorem and its connection to Dirichlet’s
problem.

b) Bergman’s kernel functions and conformal mapping.

¢) Automorphic functions.

d) Green’s functions.

In Chapter 9.
a) Picard/Montel Theorems and their consequences.
In Chapter 10.

a) A thorough treatment of analytic continuation.

b) The Riemann-Weierstra-Weyl concepts of Riemann surfaces as
well as Riemann surfaces defined as connected one-dimensional
complex analytic manifolds.

c¢) Covering spaces, sheaves, lifts.

d) The General Uniformization Theorem derived via a sequence of
carefully graded Exercises.

In Chapter 11.

a) Thorin’s Theorem.

b) Applications to M. Riesz’s Convexity Theorem and related parts
of functional analysis.

In Chapter 12. An introduction to the theory of complex functions of
more than one complex variable.
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Within each section, all the numbered items save Figures, e.g., THE-
OREMs, Exercises, equations, are numbered consecutively as they appear.
Thus in Section 3.2, the first item is 3.2.1 LEMMA, the second item is,
3.2.2 COROLLARY, the third item is (3.2.3), (the first) numbered equation,
etc.

State University of New York at Buffalo B. R. G.
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1

Fundamentals

1.1. Introduction

The text is addressed to readers with a standard background in under-
graduate algebra, analysis, and elementary topology. Hence, when refer-
ence is made to concepts such as groups, maps, posets, topological spaces,
etc., there is an underlying assumption that the reader is familiar with
them. Nevertheless, all terms and notations essential for the understand-
ing of the material are defined or explained in the Chapters, the GLOS-
SARY/INDEX, or the SYMBOL LIST.

Real analysis deals with the study of functions defined on a set X and
taking values, for some n in N, in the set R™ of n-tuples of real numbers or
occasionally in the set C" of n-tuples of complex numbers.

On the other hand, complex analysis is confined to the study of locally
holomorphic functions, i.e., for some nonempty connected open subset, i.e.,
region, Q2 of C, functions f in C? and differentiable throughout .

Beginning with a system, e.g., that of Zermelo-Fraenkel, (ZF) [Me], of
axioms for set theory, one can construct in turn the system N =] {1,2,...}
of natural numbers, the ring Z of integers, the field Q of rational numbers,
and finally the field R of real numbers [La]. The result is a field endowed
with an order < (a transitive relation such that for any two (different)
elements x and y, precisely one of < y and y < x is true); R is complete
with respect to <, i.e..for every subset bounded above there is a unique
supremum (least upper bound). Since any two complete ordered fields are
field- and order-isomorphic [O], one may proceed directly as follows.

1.1.1 DEFINITION. THE SET R 1S A COMPLETE ORDERED FIELD.
The multiplicative identity 1 of R gives rise to 1,1+ 1,..., i.e., to the

set N of natural numbers. The ring Z of integers is the set of R-equivalence
classes of N?:

{tm,n)R(m'.n")} & {m+n"=m'+n}.
The field Q of rational numbers is the set of all S-equivalence classes of

Z x (Z\ {0}):
{(p.9)S ('.d)} & {pd' =p'q}.
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The field C of complex numbers is the set

R % {(a,b) : {a,b} CR}ERxR

in which the algebraic operations addition (+) and multiplication () as well
as the symbols 0 and i are defined according to:

(a,b) + (c.d) & (a+c,b+d),

(a,b) - (c.d) ¥ (a.b)(c,d) ¥ (ac — bd, be + ad),

0% (0,0),i ¥ (0.1).

Furthermore, R is identified with R x {0} and then (a,b) 4f 4 + ib. When

i R(z) +i(2) € C, the absolute value of = is |z| <f /o + b2
(When a € R and a is regarded as a + 10, an element of C, the definition
of |a| as just given and the definition

|(I|d£f{(l ifa>0
a ifa<0
. def def @ — b
are equivalent.) If z = a+ib# 0 and w = W, wz =zw = 1.

[ 1.1.2 Note. Below and throughout the book, to avoid impera-
tives, most Exercises are phrased as assertions to be proved.]

1.1.3 Exercise. a) The set N is the intersection of all R-subsets S contain-
ing 1 and such that if z € S, 2 + 1 € S. b) The order in R is Archimedean,
e.,if €e >0 and M > 0, then for some n in N, ne > M.
[Hint: b) Otherwise, for some positive € and M and each n in N,
ne < M, whence {ne : n € N} has a supremum.]

1.1.4 Exercise. If a,b € R, then |a+b| < |a| + |b|. Equality obtains iff
for some nonnegative constants A, B, not both zero, Aa = Bb.

1.1.5 Exercise. a) Addition and multiplication in C are commutative op-
erations. b) If a 4+ ib € C, |a + ib| < |a| + |b| and equality obtains iff ab = 0.

The following special types of subsets of R and C appear frequently in
the text:

e when —oo < a < b < oo, the oriented real intervals:

def

(a,b) = {z : a<z<b}, (open),
[a.b) 2 {2z : a<z<b}, (right-open),
(a,b] {2 : a<az<b}, (left-open),
(a.b] {2 : a<z<b}, (closed);
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e when S C R, ST % 5n[0, 0);
e when {p,q} C C the oriented complex intervals:

a
)
-

(P
[P q

1—t)p+tqg, 0<t <1}, (open),

o
]
-

q)
)

IIE;

1—t)p+tq, 0<t <1}, (left-open),

(8]

= {= =(1-t)

={z : 2=(1—-t)p+tq,0<t <1}, (right-open),
pal E{z:2=(1-1)
| Z{z:2=(1-1)

[Pq

L—t)tp+tq, 0<t <1}, (closed);

([a,b), (a,b], [p,q), and (p,q] are half-open complex intervals);

e the subgroup T ef {z : z€C, |z] =1} of the multiplicative group of
nonzero elements of C.
The (possibly empty) interior of any of the real intervals above is (a, b).
For a set {X,} Sers X-yel‘Xw is the Cartesian product of the sets X,

e, XyerX, ©{f: f:T3y> f(7)€X,}. Since f(y) € X,, occa-
sionally the notation . is used for f(v) and an f is a vector {I‘Y}wel’
When, for some X, X, = X, then Xweer = X', the set of all maps from
I into X.

An n-dimensional interval I in R™ is either the empty set (0) or the
Cartesian product of n one-dimensional intervals each of which has a non-
empty interior. For n in N, a half-open n-dimensional interval in

R™ dg{xdg(rl....,xn) : riER.lgiSn}

is the Cartesian product X::1 [ak,br) of right-open intervals. If by — ax
is k-free, the half-open n-dimensional interval is a half-open n-dimensional
cube. When n > 1, elements of R" or C" are regarded as vectors and are
denoted by boldface letters: a, x, ... . The vector (0,...,0) is denoted O.

The length or norm of the vector x ef (1, xp) is [|x]|2 -

The cardinality of X is denoted # (X), e.g., # (N) % Ro, # (R) ¥ ¢.
The ordinal number of the well-ordered set of equivalence classes of well-
ordered countable sets is Q2. (The previously introduced use of 2—to denote
a region—causes no difficulty since the two contexts—ordinal numbers and
regions—do not occur together in the remainder of the book.)

When n is a cardinal number the phrase—n objects—means there is
a set S consisting of pairwise different objects and #(S) =n. Thus, the
phrase—two points x and y—implies = # y.

On the other hand, the phrase—the points x and y—carries no such
implication: both z = y and = # y are admissible.
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1.2. Topology and Continuity

1.2.1 DEFINITION. A TOPOLOGICAL SPACE IS A SET X PAIRED WITH A
SUBSET T OF B(X), THE SET OF ALL SUBSETS OF X. THE SET T IS THE
TOPOLOGY OF X AND THE ELEMENTS OF T ARE THE OPEN SETS OF X.
THE AXIOMS GOVERNING T ARE:

a) DeT AND X €T;

b) T IS CLOSED WITH RESPECT TO THE FORMATION OF ARBITRARY
UNIONS AND FINITE INTERSECTIONS.

The set of open sets of X is also denoted O(X).
When A C X, a) and b) hold for the set

T,“’éf{AmU : UeT},

which endows A with the relative topology induced by T.

1.2.2 Exercise. For a topological space X, the set F(X) of complements
of elements of O(X) is governed by:

a') 0 e F(X) and X € F(X);
b’) F(X) is closed with respect to the formation of arbitrary intersections
and finite unions.

When T and T’ are topologies for X and T C T', T’ is stronger than
T while T is weaker than T'.

1.2.3 Example. For any set X there are:

a) the strongest or discrete topology P(X) consisting of all subsets of X;
b) the weakest or trivial topology consisting only of # and X.

1.2.4 Example. For R, the customary topology consists of all (arbitrary)
unions of open intervals. Unless the contrary is stated, R is regarded as
endowed with its customary topology.

On the other hand, the Sorgenfrey topology T, for R consists of all
(arbitrary) unions of left-closed intervals, i.e., unions of all sets of the form

[a.b)dzef{l' : Rsa<z<beR}.
For a topological space X a subset B def {Un}yep of T is a base for T
iff every element (open set) in T is the union of (some) elements of B.

1.2.5 Example. In both the usual and Sorgenfrey topologies for R, Q
meets every open set.

The countable set { (a,b) : Q> a <be Q} is a base for the custom-
ary topology. By contrast, if B is a base for T, and [a,b) € T, a must
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belong to some base element B contained in [a,b). Thus #(B) > #(R):
there is no countable base for T,.

If B is an arbitrary subset of P(X), B is contained in the discrete
topology PB(X): the set of all topologies containing B is nonempty. The
intersection Ty of all topologies containing B is the topology for which B
is a base: B generates Tp.

When, for (X, T), there is a countable base for T, X is second countable.
When X contains a countable subset meeting every element of O(X), X is
separable.

1.2.6 Example. The set { (a,b)" : {a,b} CQ, a < b} is a countable base
for the customary topology for R™. )
When X and Y are sets and f € YX, f is:

e injective iff
{f(a) = f(b)} = {a = b};
o surjective iff f(X) =Y;
o bijective iff f is injective and surjective;
e autojective iff X =Y and f is bijective.
Injective, surjective, ... maps are injections, surjections, ... .
When (X, T;) and (X2, T,) are topological spaces and f € Xéx' (the
set of all maps from X, into X5), f is:
o continuous iff f~1(Ty) C Ty;
e open iff f(Ty) C Ts.
e a homeomorphism iff f is bijective and f is both continuous and open,
i.e., iff f is bijective and both f and f~! are continuous.

The set of continuous maps in X.f‘ is denoted C (X1, X5).

1.2.7 Exercise. If (f,g) € C(X,Y) x C(Y,Z), then go f € C(X, Z).
When A C X and O(A) is the set of open subsets of A,

A0 & U v.
U€0(A)

is the (possibly empty) interior of A. For a nonempty subset A of X, a
neighborhood N(A) is a set such that A C N(A)°. For simplicity of no-

tation, when = € X, N(x) def N({z}). The set of neighborhoods of A is
N(A).

1.2.8 Exercise. If A # 0, for F ' N (A), the following obtain:

a) F#£0, 0 ¢ F;
b) {F,F' € F} = {FnF e F};
o) {{F e FyA{FCG}}={GeF}.



