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Preface

The primary focus of this book is on techniques for segmentation of visual
data. By “visual data,” we mean data derived from a single image or from
a sequence of images. By “segmentation” we mean breaking the visual data
into meaningful parts or segments. However, in general, we do not mean
“any old data”: but data fundamental to the operation of robotic devices
such as the range to and motion of objects in a scene.

Having said that, much of what is covered in this book is far more general:
The above merely describes our driving interests.

The central emphasis of this book is that segmentation involves model-
fitting. We believe this to be true either implicitly (as a conscious or sub-
conscious guiding principle of those who develop various approaches) or
explicitly.

What makes model-fitting in computer vision especially hard? There are
a number of factors involved in answering this question. The amount of
data involved is very large. The number of segments and types (models)
are not known in advance (and can sometimes rapidly change over time).
The sensors we have involve the introduction of noise. Usually, we require
fast (“real-time” or near real-time) computation of solutions independent
of any human intervention/supervision. Chapter 1 summarizes many of the
attempts of computer vision researchers to solve the problem of segmenta-
tion in these difficult circumstances.

However, despite the perhaps unique nature of the difficulties, the fun-
damental fact that segmentation boils down to model-fitting leads one
to naturally turn to statistical science for guidance. Statisticians have
long studied the problem of fitting models to noisy observational data.
Similarly, they have studied methods of model validation and selection
(from alternative models), albeit, usually in the context of situations
where a trained statistician is “in the loop” of data collection-analysis-
collection.

Chapters 2 and 3 summarize some of the principles and recent work
of statisticians on these important problems. It is our contention that
much of the more recent work (if not some of the earlier work as well!)
should provide guiding principles for methods in computer vision seg-
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mentation and model-fitting, particularly with respect to finding robust
methods.

However, as argued in Chapter 4, the transfer of knowledge from sta-
tistical science to computer vision is no mere application of principles and
techniques. This chapter argues that the model-fitting of computer vision
problems is a much more geometrical concept than the related concept of
regression in statistics. The chapter goes on to define geometrical fitting,
and, consequently, geometrical versions of model selection criteria.

Since the work summarized in Chapter 4 is very recent and demands a
fair degree of familiarity with statistical concepts, it is not surprising that
the work has yet to have its major impact on computer vision researchers.
However, Chapters 5 and 6 show that the underlying principles can be
applied to real world computer vision problems to yield new methods with
promising results. These chapters concentrate on range (Chapter 5) and
motion (both chapters) segmentation. In relation to the latter, the two
approaches, although sharing the same principles of using robust statistical
algorithms, are complementary, in that chapter 5 considers segmentation
of optical flow (dense and instantaneous image plane motion), whereas
chapter 6 studies the segmentation of motion correspondences (sparse and
discrete image plane motion). Chapter 6 also summarizes work that has
gone a long way toward developing and testing methods of model selection
in that context.

This book is an expression of collaboration between researchers from two
usually very distinct communities: statistical science and computer vision
researchers. We trust that this book will serve both communities well. In
particular, statisticians interested in application of robust fitting and model
selection will find that this book provides them with the general ideas and
historical background of image and scene segmentation (Chapter 1 and
References). Chapter 4 will provide such an audience with thought provok-
ing developments in a geometrical fitting theory. In addition, Chapters 5
and 6, together with the cited references, will provide them with practical
tips and picture of the current state of the art in scene segmentation and
model selection using robust statistics. Likewise, image analysis researchers
will find that Chapter 4 provides an inspiration for the adaptation of sta-
tistical concepts for their work in image analysis, which generally involves
some form of segmentation and some form of model-fitting (if not selec-
tion as well). Those unfamiliar with the recent work in robust statistics for
model selection and model-fitting will find that Chapters 2 and 3 provide
a snapshot of such recent work.

We would like to express our sincere thanks to those that made this
volume possible: the contributors of the chapters, each an expert in their
field and each generous with their time and expertise. Ms. K. McKenzie
is thanked for a very thorough copyedit of this manuscript. Lastly, we
thank the staff at Springer: In particular, Dr. William R. Sanders whose
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enthusiasm and encouragement for this project was greatly appreciated;
Ms. L. Poliner and Mr. W. Yuhasz for steering the manuscript (and our-
selves!) through the production process.

Alireza Bab-Hadiashar
David Suter

Clayton, Victoria, Australia
November 29, 1999
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