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How, in frames at rest,
the tail goes west,
while the east is won
by the soliton

PREFACE

A few years ago, when I started reading about solitons, I was
fascinated by the beauty of the theory but at the same time astonished
by the amount of assertions without even a shadow of a proof. No doubt,
this lack of rigour is connected with the fact that many great discoveries
were made during a relatively short period of time. In particular, in the
early seventies it went more or less like this: A discovery was done and
the proof was sketched. Immediately another discovery followed and the
process repeated itself.

Of course, in this way a lot of questions remained unanswered.

To mention only two of them: (i) How do KdV solitons emerge from arbitrary
initial conditions? (ii) What are the phase shifts of these solitons as
they interact both with the other solitons and with the dispersive wave-
train?

The purpose of this volume is to provide answers to these and similar
questions. Specifically, we give a complete, rigorous and explicit descrip-—
tion of the emergence of solitons from various classes of nonlinear partial
differential equations solvable by the inverse scattering technique. To
this end we present an almost uniform method to obtain the asymptotic beha-
viour for large time of solutions of soliton problems in those coordinate
regions where the nonsoliton component can be considered as a perturbation
of the soliton component. The conditions under which our method works are
remarkably general. For instance in the KdV analysis of Chapter 2 a mild
algebraic decay of the initial function, so as to ensure that the associa-
ted reflection coefficient has a second derivative decaying at infinity as
the inverse of its argument, is already sufficient.

The chapters in this volume are essentially self-contained with the
exception of Chapter 1, which uses some concepts that are discussed in more
detail in Chapter 2. Therefore the reader not particularly familiar with

soliton theory is advised to read Chapter 2 before Chapter 1.
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INTRODUCTION

For centuries nonlinearity formed a dark mystery.
Nowadays, though things still look rather black, there are a few bright
spots where we may confidently expect steady progress. This volume deals

with one of these sparkles of hope: the inverse scattering transformation.

1. Historical remarks.

Many physical phenomena are nonlinear in nature. More often than not
they can be modelled by nonlinear partial differential equations offering
a wide range of complexity. Until the late sixties of this century the
analyst had, roughly speaking, the choice: approximate or apologize. In
the past two decades this situation changed, since various powerful
nonperturbative mathematical techniques made their entrance. One of these
is the inverse scattering technique (IST), also called inverse scattering
transformation or spectral transform.

Its discovery is due to Gardner, Greene, Kruskal and Miura (GGKM for
short) and was first reported in 1967 in their famous two-paged signal
paper [9]. In this paper GGKM showed how to obtain the solution u(x,t)

of the Korteweg—de Vries (KdV) initial value problem



(1.1a) B = 6uuX ¥ By = 0, —® < X < +oo, t >0

(1.1b) u(x,0) = uo(x).

Here and in the sequel a subscript variable indicates partial differen-
3

tiation, e.g. %, = 5% . Equation (1.1a) was first derived by Kortewegz and
de Vries [13] in 1895 in the context of free-surface gravity waves
propagating in shallow water (see [4] for its historical background).

Below we shall discuss the GGKM method in some detail. Here we only
mention its amazing starting point, namely the introduction of the
solution u(x,t) of (1.1) as a potential in the Schr&dinger scattering
problem.

In 1968 Lax [16] put the GGKM method into a framework that clearly
indicated its generality and had a substantial influence on future
developments. In particular, Lax showed that (1.1a) is a member of an
infinite family of nonlinear partial differential equations that can all
be analysed in a similar fashion.

Guided by Lax' generalization of the pioneering work of GGKM, Zakharov
and Shabat [26] were able to solve the initial value problem for another
nonlinear equation of physical importance, the nonlinear Schrddinger
equation (NLS)

(1.2) iu, = o+ 2|u|?u,

To this end they associated (1.2) with a spectral problem based on a
system of two coupled first order ordinary differential equations.
Incidentally, the NLS shows up in the description of plasma waves and
models plane self-focusing and one-dimensional self-modulation.
Subsequently, Tanaka [20], [22] extended and rigorized the direct
and inverse scattering theory for the Zakharov-Shabat system, motivated
by the surprising discovery of Wadati [23] that another interesting
nonlinear evolution equation could be solved by this system, namely
the modified Korteweg-de Vries equation (mKdV)

(1.3) u, * 6u2uX il W 0

which appears in the continuum limit of a one-dimensional lattice with

quartic anharmonicity [5].



Ablowitz, Kaup, Newell and Segur [1], [2] then showed that NLS and
mKdV belong to a large class of nonlinear partial differential equations
that can be solved via a generalized version of the Zakharov-Shabat
scattering problem. Among these newly found integrable equations were
several of physical importance, such as the sine—-Gordon equation

[ * ]
(1.4) u, =4 sinLZ J u(x',t)dx'J

t

which arises as an equation for the electric field in quantum optics [15],
though the related forms

(1.4)' O T sin o and

(1.4)" Ox ~ Tep = sin ©

appear more frequently in the literature (cf. [12]).

Herewith the triumphal march of the inverse scattering technique began.
We shall not follow it further but refer to the survey articles [5], [10],
[15], [17], [18] as well as the many textbooks on solitons [3], [6], [7],
[3], [14], [25] currently available. We only mention that several other
classes of physically relevant equations were found to be solvable by
inverse scattering methods. In fact the process of finding new integrable
nonlinear evolution equations has continued until this very day and has
grown out into a major industry. Moreover, IST had its spin-off's to other
areas of mathematics, like algebraic and differential geometry, functional
and numerical analysis, etc. Nowadays — as stated in [6] - its applications
range from nonlinear optics to hydrodynamics, from plasma to elementary
particle physics, from lattice dynamics to electrical networks, from
superconductivity to cosmology and geophysics. Moreover, IST is developing
into an interdisciplinary subject, since it has recently penetrated in
epidemiology and neurodynamics.

An essential reason for this wide applicability has not been mentioned
so far: a dominant feature of nonlinear evolution equations of physical
importance solvable via IST is that they admit exact solutions that
describe the propagation and interaction of solZtons.

At the moment there is no generally accepted mathematical definition
of a soliton. As a working definition of a soliton we might take (cf. [5])

that it is a "localized" wave (in the sense of sufficiently rapidly



decaying) which asymptotically preserves its shape and speed upon
interaction with any other such localized wave. However, the concept of
a soliton has a great intuitive appeal and is a good illustration of the
fact that a happily chosen terminology is half of the success of a theory.
The soliton was discovered in 1965 by Zabusky and Kruskal [24] while
performing a numerical study of the KdV. Actually, the name "soliton"
was suggested by Zabusky, who originally used the term "solitron" instead
(see [6], pp. 176, 177).

Let us discuss their discovery in some detail. Already Korteweg and
de Vries theirselves knew [13] that the KdV had a special travelling

wave solution, the solitary wave

2
(1.5) u(x,t) = —Zkasechz[ko(x - X T 4k6t)], (sech z = —E———jrg)
e’ + e
where ko and X, are constants. Observe, that the velocity of this wave,
4k6, is proportional to its amplitude, Zké. Now, in [24] Zabusky and

Kruskal considered two waves such as (1.5), with the smallest to the right,
as initial condition to the KdV. They discovered that after a certain
time the waves overlap (the bigger one catches up), but that next the
bigger one separates from the smaller and gradually the waves regain their
initial shape and speed. The only permanent effect of the interaction is
a phase shift, i.e. the center of each wave is at a different position
than where it would have been if it had been travelling alone.
Specifically, the bigger one is shifted to the right, the smaller to the
left. The name soliton was chosen so as to stress this remarkable
particle-like behaviour.

To conclude these introductory remarks, let us not forget to mention
that, although in the past few years soliton interaction has been
observed in various physical systems (see [3]), the first physical
observation of what is now known as the single soliton solution (1.5)
of the KdV already took place in the month of August 1834 by John Scott
Russell, during his celebrated chase on horseback of a huge wave in the
Union Canal, which from Edinburgh, joins with the Forth-Clyde canal and
thence to the two coasts of Scotland. His own report of this experience,

though classical by now, cannot be missed in any true soliton story.



It reads as follows [19]:

"I was observing the motion of a boat which was rapidly drawn
along a narrow channel by a pair of horses, when the boat
suddenly stopped - not so the mass of water in the channel
which it had put in motionj; it accumulated round the prow

of the vessel in a state of violent agitation, then suddenly
leaving it behind, rolled forward with great velocity,
assuming the form of a large solitary elevation, a rounded,
smooth and well defined heap of water, which continued its
course along the channel apparently without change of form

or diminution of speed. I followed it on horseback, and over-
took it still rolling on at a rate of some eight or nine miles
an hour, preserving its original figure some thirty feet long
and a foot to a foot and a half in height. Its height
gradually diminished, and after a chase of one or two miles

I lost it in the windings of the channel. Such, in the month
of August 1834, was my first chance interview with that

singular and beautiful phenomenon ...".

2. IST for KdV: the gist of the method.

To comfort the reader who is completely new to the subject, let us
at least give a rough sketch of how IST works, referring to [8] for the
many intricate mathematical details. To this end we indicate here very
briefly the basic features of the GGKM method, which is the first and
undoubtedly the most fundamental example of an inverse scattering method.
Let us consider the KdV initial value problem (1.1) with uo(x) an
arbitrary real function, sufficiently smooth and rapidly decaying for
x > %o, The surprising discovery of GGKM is now, that the nonlinear
problem (1.1) can be solved in a series of linear steps, schematically

representable in the following diagram



direct Schrddinger scattering
initial function scattering data
u(x,0) = uO(x) > at t =0
|
v time evolution in time evolution in
| configuration space spectral space
L
solution u(x,t) scattering data
at t > 0 < at t > 0

inverse Schrodinger scattering

The manipulations suggested by this diagram are the following:
For each t 2 0, introduce the real function u(x,t) as a potential in the

Schrddinger scattering problem
(2.1) wxx + (k2 - u(x,t))y =0, —® < x < 4w,

For t = 0, compute the associated bound states —Kﬁ < —Ké < sww X —Ka,

K > 0, right normalization coefficients c§ and right reflection
coefficient br(k) (see Chapter 2 for their definition and properties),

in other words, compute the right scattering data {br(k),Kj,cg} associated
with uO(x). Then, as u(x,t) evolves according to the KdV, its right

scattering data evolve in the following simple way:

K.

(2.2a) . (t)
J J

(2.2b) c§(c) C§exp{4(3t}, P=1,2,...,N

(2.2c) br(k’t) = br(k) exp{8ik3t}, - < Kk < 4w,

To recover u(x,t) from these data, one applies the inverse scattering
procedure for the Schrddinger equation found by Gel'fand and Levitan

[11], and defines

L Ty 2ike
(2.3) (est) =2 Z [ei(e)]ze 4+ = b_(k,t)e” " "dk.
J=1 b m _wJ r
Next, one solves the Gel'fand-Levitan equation
(2.4) Bly;x,t) + Q(x+y;t) + [ Qx+y+z;t)B(z;x,t)dz = 0

o)



with y > 0, x € R, t > 0. The solution RB(y;x,t) has the important

property
+ [-oo ] 1
(2.5) B(0 ;x,t) = J u(x',t)dx', x € R, t > 0,
x
and so we find that the solution of the KdV problem (1.1) is given by
3 +
(2.6) u(x,t) = - 5;-8(0 ;X,t), x € R, t > 0.

Notice that the original problem for the nonlinear partial differential
equation (1.1) is essentially reduced in this way to the problem of
solving a one-dimensional linear integral equation.

Explicit solutions of (2.4) have only been obtained for br = 0. The
solution ud(x,t) of the KdV with scattering data {O,Kj,CE(t)} is called
the pure N-soliton solution associated with uo(x), on account of its
asymptotic behaviour displayed in the following remarkable result due to

Tanaka [21]

N
(2.7a) iiz ;;& ud(x,t) = p§1 ('2K;S€Ch2[Kp(X—X;—AK;t)]>’ =0
RN o
= Il
(2.7b) Xp 2Kp logl ZKP £2=1 \K£+Kp> }'

Thus for large positive time ud(x,t) arranges itself into a parade of N
solitons with the largest one in front and this happens uniformly with

respect to x on R.

3. Asymptotics for nonzero reflection coefficient: main purpose of the

book.

As i1llustrated by the previous section, the inverse scattering method
enables us to obtain rather explicit exact solutions to nonlinear wave
equations and to determine their asymptotic behaviour, which generally
corresponds to a decomposition into solitons. Evidently, the problem of
the asymptotic behaviour evolving from an arbitrary initial condition is
in this way far from exhausted. It is still necessary to determine the

asymptotic properties of the 'monsoliton part" of the solution whose



presence 1s connected with the reflection coefficient being nonzero. In
this volume we concern ourselves with this problem.

Rather than to give an elaborate general discussion, let us
illustrate the ideas involved by considering again the KdV problem (1.1).

Suppose uO(x) is not a reflectionless potential. Then, in view of the
fact that the linearized version of (1.1a) is a dispersive equation with
associated group velocity vg = -3k? £ 0, one expects that for large time
the soliton part and the dispersive component will separate out, the
dispersive wavetrain moving leftward and the solitons nicely arranging
theirselves into a parade moving to the right similar to that described
by (2.7). However, this is only heuristic reasoning. In fact it is
dangerous reasoning too, since for nonlinear equations there is no such
thing as a superposition principle.

The circumstance that at the time the question of validity of the
above '"plausible'" conjecture had not been answered in a mathematically
satisfactory way, formed the impetus for the research laid down in the
present volume .

The main purpose of this book 1is therefore to give a complete and
rigorous description of the emergence of solitons from various (classes
of) nonlinear partial differential equations solvable by the inverse
scattering technique.

Throughout the book we focus our attention on coordinate regions

—t1/3 for

where the dispersive component is sufficiently small, e.g. x 2
the (m)KdV problem. The behaviour of the solution in other regions, where
the dispersive waves interact, is not discussed, since entirely different

techniques are needed. For recent results in those regions we refer to [3].

4. Brief description of the contents.

The chapters in this volume are largely self-explanatory. Only
Chapter 1 forms an exception. We therefore advise the reader new to the
field to start with Chapter 2. In fact, both chapters deal with the KdvV.
However, in Chapter 1 the central ideas of our asymptotic method are

exposed in the simplest nontrivial setting, whereas Chapter 2 serves to



extend the results of Chapter 1, as well as to supply the details of the
inverse scattering machinery. Also, the discussion of existence and
uniqueness for the KdV initial value problem is postponed to Chapter 2.
In Chapter | we present a rigorous demonstration of the emergence of
solitons from the KdV initial value problem with arbitrary real initial
function. We show that for any choice of the constants v > 0 and M 2 0

there exists a function o(t) tending to zero as t - «, such that

4.1) sup Ju(x,t) - ud(x,t)] = Qo (), as t > o,
x2=-M+vt

The exact behaviour of o(t) depends on properties of u If u. decays

0° 0
exponentially for x -+ #=, then so does o(t) for t » «. If the decay of U,

is only algebraic then also the decay of o(t) is algebraic.
In Chapter 2 we extend the asymptotic analysis given in Chapter 1. In

fact, we no longer restrict our investigation to right half lines linearly

moving rightward, but allow the right half lines to move slowly leftward.

It is shown that in the absence of solitons the solution of (1.1) satisfies
. -2/
(4.2) sup  |u(x,t)| =0(t /3), as t > =,
xz-t1/3

whereas in the general case

(4.3) sup . uGx,0) = uyGe,0)] =03, as e s e,

xz-t
The emergence of solitons is clearly displayed by the remarkable
convergence result

N
. ) o+ _
(4.4) lim ssq/S u(x,t) - p§1 (—ZKpsechz[Kp(x ® 4(;t)]>l 0

t>eo x2- *

with x; as in (2.7b). In addition, we construct explicit x and t dependent
bounds for the nonsoliton component of the solution and establish some
interesting momentum and energy decomposition formulae. To support the
analysis we only need to require - apart from the obvious assumption that
IST works at all - that the right rgflection coefficient br is of class

Cz (R) such that the derivatives biJ)(k), j = 0,1,2 behave as O(Ik[_l)

for k > o, This condition is extremely weak. Hence our results apply

to a large class of KdV initial value problems.



