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Preface

From May 8 to May 19th of 2006, the Department of Mathematics at the
University of Utah hosted a minicourse on some modern topics in stochas-
tic partial differential equations [SPDEs]. The participants included graduate
students and recent PhDs from across North America, as well as research
mathematicians at diverse stages of their careers. Intensive courses were given
by Robert C. Dalang, Davar Khoshnevisan, An Le, Carl Mueller, David
Nualart, Boris Rozovsky, and Yimin Xiao. The present book is comprised
of most of those lectures.

For nearly three decades, the topic of SPDEs has been an area of active
research in pure and applied mathematics, fluid mechanics, geophysics, and
theoretical physics. The theory of SPDEs has a similar flavor as PDEs and
interacting particle systems in the sense that most of the interesting devel-
opments generally evolve in two directions: There is the general theory; and
then there are specific problem-areas that arise from concrete questions in
applied science. As such, it is unlikely that there ever will be a cohesive all-
encompassing theory of stochastic partial differential equations. With that in
mind, the present volume follows the style of the Utah minicourse in SPDEs
and attempts to present a selection of interesting themes within this interest-
ing area. The presentation, as well as the choice of the topics, were motivated
primarily by our desire to bring together a combination of methods and deep
ideas from SPDEs (Chapters 1, 2, and 4) and Gaussian analysis (Chapters 3
and 5), as well as potential theory and geometric measure theory (Chapter 5).
Ours is a quite novel viewpoint, and we believe that the interface of the men-
tioned theories is fertile ground that shows excellent potential for continued
future research.

We are aware of at least four books on SPDEs that have appeared since
we began to collect the material for this project [4; 8; 12; 14]. Although there
is little overlap between those books and the present volume, the rapidly-
growing number of books on different aspects of SPDEs represents continued,
as well as a growing, interest in both the theory as well as the applications of
the subject. The reader is encouraged to consult the references for examples

\%



VI Preface

in: (i) Random media [2; 4; 18] and filtering theory [15]; (ii) applications in
fluid dynamics and turbulence [1; 2; 17]; and (iii) in statistical physics of
disordered media [2; 6; 7; 10]. Further references are scattered throughout the
lectures that follow. The reader is invited to consult the references to this
preface, together with their voluminous bibliographies, for some of the other
viewpoints on this exciting topic.

The Utah Minicourse on SPDEs was funded by a generous VIGRE grant
by the National Science Foundation, to whom we are grateful. We thank
also the lecturers and participants of the minicourse for their efforts. Finally,
we extend our wholehearted thanks to the anonymous referee; their careful
reading and thoughtful remarks have led to a more effective book.

Salt Lake City, Utah Davar Khoshnevisan
July 1, 2008 Firas Rassoul-Agha
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A Primer on Stochastic Partial Differential
Equations

Davar Khoshnevisan

Summary. These notes form a brief introductory tutorial to elements of Gaussian
noise analysis and basic stochastic partial differential equations (SPDEs) in general,
and the stochastic heat equation, in particular. The chief aim here is to get to the
heart of the matter quickly. We achieve this by studying a few concrete equations
only. This chapter provides sufficient preparation for learning more advanced theory
from the remainder of this volume.

1 What is an SPDE?

Let us consider a perfectly even, infinitesimally-thin wire of length L. We lay
it down flat, so that we can identify the wire with the interval [0, L]. Now we
apply pressure to the wire in order to make it vibrate.

Let F(t,z) denote the amount of pressure per unit length applied in the
direction of the y-axis at place x € [0, L]: F < 0 means we are pressing down
toward y = —oo; and F' > 0 means the opposite is true. Classical physics
tells us that the position u(t,z) of the wire solves the partial differential
equation,

2 2
0%u(t, x) :KB u(t,x) i
ot? Ox?

F(t,z) (t>0,0<z<L), (1)

where k is a physical constant that depends only on the linear mass density
and the tension of the wire.

Equation (1) is the so-called one-dimensional wave equation. Its solution—
via separation of variables and superposition—is a central part of the classical
theory of partial differential equations.

D. Khoshnevisan and F. Rassoul-Agha (eds.) A Minicourse on Stochastic Partial 1
Differential Equations.
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2 D. Khoshnevisan

We are interested in addressing the question, “What if F' is random
noise”? There is an amusing interpretation, due to Walsh [30], of (1) for
random noise F: If a guitar string is bombarded by particles of sand, then
the induced vibrations of the string are determined by a suitable version
of (1).

It turns out that in most cases of interest to us, when F' is random
noise, Equation (1) does not have a classical meaning. But it can be inter-
preted as an infinite-dimensional integral equation. These notes are a way
to get you started thinking in this direction. They are based mostly on the
Saint-Flour lecture notes of Walsh from 1986 [30, Chapters 1-3]. Walsh’s
lecture notes remain as one of the exciting introductions to this subject to
date.

2 Gaussian Random Vectors

Let g :== (g1,.-.,9n) be an n-dimensional random vector. We say that the
distribution of g is Gaussian if t-g := Z;=1 t;g; is a Gaussian random variable
for all t := (t1,...,t,) € R™. It turns out that g is Gaussian if and only if
there exist g € R™ and an n X n, symmetric nonnegative-definite matrix C
such that

E [exp (it - g)] = exp (z’t T %t . Ct) . (2)

Exercise 2.1. Prove this assertion. It might help to recall that C' is nonneg-
ative definite if and only if ¢t - Ct > 0 for all t € R™. That is, all eigenvalues
of C' are nonnegative.

3 Gaussian Processes

Let T be a set, and G = {G(t) }+er a collection of random variables indexed
by T. We might refer to G as either a random field, or a [stochastic] process
indezed by T.

We say that G is a Gaussian process, or a Gaussian random field,
if (G(t1),...,G(tr)) is a k-dimensional Gaussian random vector for every
t1,...,tx € T. The finite-dimensional distributions of the process G are the
collection of all probabilities obtained as follows:

Py, ot (A1, Ag) =P {G(t1) € A1,...,G(tx) € A}, (3)

as Aip,..., Ax range over Borel subsets of R and k ranges over all positive
integers. In principle, these are the only pieces of information that one has
about the random process GG. All properties of G are supposed to follow from
properties of these distributions.
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The consistency theorem of Kolmogorov [19] implies that the finite-
dimensional distributions of G are uniquely determined by two functions:

1. The mean function u(t) := E[G(t)]; and
2. the covariance function

C(s,t) := Cov(G(s),G(t)).

Of course, p is a real-valued function on 7', whereas C is a real-valued function
onT xT.

Exercise 3.1. Prove that if G is a Gaussian process with mean function pu
and covariance function C then {G(t) — u(t)}ter is a Gaussian process with
mean function zero and covariance function C.

Exercise 3.2. Prove that C is nonnegative definite. That is, prove that for all
t1,...,tx € T and all 21,...,2x € C,

k
YD Clt; t)zm 2 0. (4)

j=11=1

Exercise 3.3. Prove that whenever C' : T x T' — R is nonnegative definite
and symmetric,

|C(s,t)|> < C(s,s) - C(t,t) for all s,t € T. (5)

This is the Cauchy-Schwarz inequality. In particular, C(¢,t) > 0 for all
teT.

Exercise 3.4. Suppose there exist E, F C T such that C(s,t) = 0 for all
s € E and t € F. Then prove that {G(s)}scg and {G(t)}ier are indepen-
dent Gaussian processes. That is, prove that for all s;,...,s, € E and all
ti,...,tm € F, (G(s1),...,G(sn)) and (G(t1),...,G(t;n)) are independent
Gaussian random vectors.

A classical theorem—due in various degrees of generality to Herglotz,
Bochner, Minlos, etc.—states that the collection of all nonnegative definite
functions f on T x T matches all covariance functions, as long as f is
symmetric. [Symmetry means that f(s,t) = f(t,s).] This, and the afore-
mentioned theorem of Kolmogorov, together imply that given a function
u T — R and a nonnegative-definite function C : ' x T — R there
exists a Gaussian process {G(t)}:er whose mean function is p and covariance
function is C'.
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Ezample 3.5 (Brownian motion). Let T = Ry = [0,00), p(t) := 0, and
C(s,t) := min(s,t) for all s,t € R4. I claim that C is nonnegative definite.
Indeed, for all z;,...,2, € C and t1,...,tx > 0,

k k k oo
Zme ti t)z ZZZ]'Z_I/O 1j0,t,1 (%) 10,2, () dz

j=11=1 j=11=1
2 (6)

= | &
— / Z l[o,tj](a:)z]— dx,
o |io

which is greater than or equal to zero. Because C is also symmetric, it
must be the covariance function of some mean-zero Gaussian process B :=
{B(t)}¢t>0. That process B is called Brownian motion; it was first invented
by Bachelier [1].

Brownian motion has the following additional property. Let s > 0 be fized.
Then the process { B(t+s) — B(s)}¢>0 is independent of { B(u)}o<u<s. This is
the socalled Markov property of Brownian motion, and is not hard to derive.
Indeed, thanks to Exercise 3.4 it suffices to prove that for all £ > 0 and
0<u<s,

E[(B(t + s) — B(s))B(u)] = 0. (7)
But this is easy to see because

E[(B(t + s) — B(s))B(u)] = Cov(B(t + s), B(u)) — Cov(B(s), B(u))
= min(t + s,u) — min(s,u) ®)

=u—-1u

=0.

By d-dimensional Brownian motion we mean the d-dimensional Gaussian
process B := {(Bi(t),...,B4(t))}+>0, where Bi,..., By are independent [one-
dimensional] Brownian motions.

Exercise 3.6. Prove that if s > 0 is fixed and B is Brownian motion,
then the process {B(t +s) — B(s)}+>0 is a Brownian motion independent of
{B(u)}o<u<s. This and the independent-increment property of B [Example
3.5] together prove that B is a Markov process.

Ezample 3.7 (Brownian bridge). The Brownian bridge is a mean-zero
Gaussian process {b(z)}o<z<1 with covariance,

Cov(b(z),b(y)) := min(z,y) — zy forall 0 < z,y <1. 9)

The next exercise shows that the process b looks locally like a Brownian
motion. Note also that b(0) = b(1) = 0; this follows because Var(b(0)) =
Var(b(1)) = 0, and motivates the ascription “bridge.” The next exercise
explains why b is “brownian.”
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Exercise 3.8. Prove that if B is Brownian motion, then b is Brownian bridge,

where
b(z) := B(z) — zB(1) foral 0 <z < 1. (10)

Also prove that the process b is independent of B(1).

Exzample 3.9 (OU process). Let B := {B(t)};+>0 denote a d-dimensional
Brownian motion, and define

B t
X(t) = % for all ¢t > 0. (11)
e
The coordinate processes X1, ..., Xy are i.i.d. Gaussian processes with mean
function p(t) := 0 and covariance function
. B (e®) By (et)
C(S,t) =E [W (12)
=exp (—3|s—t[).

Note that C(s,t) depends on s and t only through |s — t|. Such processes
are called stationary Gaussian processes. This particular stationary Gaussian
process was predicted in the works of Dutch physicists Leonard S. Ornstein
and George E. Uhlenbeck [29], and bears their name as a result. The existence
of the Ornstein—Uhlenbeck process was proved rigorously in a landmark paper
of Doob [10].

Ezample 3.10 (Brownian sheet). Let T := RY = [0,00)", pu(t) := 0 for all
te Rf , and define

N
C(s,t):= Hmin(sj iits) for all 5,¢t € RY. (13)
j=1

Then C is a nonnegative-definite, symmetric function on RQ’ X RQ’ , and the
resulting mean-zero Gaussian process B = {B(t)}teRQI is the N-parameter
Brownian sheet. This generalizes Brownian motion to an N-parameter ran-
dom field. One can also introduce d-dimensional, N-parameter Brownian
sheet as the d-dimensional process whose coordinates are independent, [one-
dimensional] N-parameter Brownian sheets.

Ezample 3.11 (OU sheet). Let { B(t)}tenf denote N-parameter Brownian
sheet, and define a new N-parameter stochastic process X as follows:

_ Bfe",...,e¥)

X(t) = W for all t := (tl,...,tN)ER_’I\_]. (14)

This is called the N-paramerter Ornstein—Uhlenbeck sheet, and generalizes the
Ornstein—-Uhlenbeck process of Example 3.9.
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Exercise 3.12. Prove that the Ornstein—Uhlenbeck sheet is a mean-zero, V-
parameter Gaussian process and its covariance function C(s,t) depends on

(s,t) only through |s — | := Z:il |si — til.

Ezample 3.13 (White noise). Let T := %(RN) denote the collection of all
Borel-measurable subsets of RV, and u(A) := 0 for all A € Z(R"). Define
C(A,B) = AN(A N B), where AV denotes the N-dimensional Lebesgue
measure. Clearly, C' is symmetric. It turns out that C' is also nonnegative
definite (Exercise 3.14 on page 6). The resulting Gaussian process W =
{W(A)} sczmn) is called white noise on RV.

Exercise 3.14. Complete the previous example by proving that the covari-
ance of white noise is indeed a nonnegative-definite function on Z(R"Y) x
B(RN).

Exercise 3.15. Prove that if A, B € #(R") are disjoint then W (A) and
W (B) are independent random variables. Use this to prove that if A, B €
Z(RYN) are nonrandom, then with probability one,

W(AUB) = W(A) + W(B) - W(AN B). (15)

Exercise 3.16. Despite what the preceding may seem to imply, W is not a
random signed measure in the obvious sense. Let N = 1 for simplicity. Then,
prove that with probability one,

()

Use this to prove that with probability one,

2" —1

Jim Y

Jj=0

2
=1, (16)

2"-1 . ;
: ; j—=1 3 -
28 2 W (|55 )| == e

Conclude that if W were a random measure then with probability one W
is not sigma-finite. Nevertheless, the following example shows that one can
integrate some things against W.

Ezample 3.17 (The isonormal process). Let W denote white noise on RY. We
wish to define W (k) where h is a nice function. First, we identify W (A) with
W(14). More generally, we define for all disjoint Ay, ..., Ay € B(RM) and
c1,...,ck € R,

k k
WD eita, | =D c;W(4;). (18)
Jj=1 7j=1
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The random variables W(A1 ) R W(Ak) are independent, thanks to Exercise
3.15. Therefore,

2
k

: k
1% ZC]'IA]- Z IAI

Jj=1 L2(P) Jj=1

k
§ cjla,
=1

5 (19)

L2(RN)

Classical integration theory tells us that for all h € L?(R") we can find h,
of the form Zf(:"l) cjnla,, such that Ay n,..., Axpn). € B(RYN) are disjoint
and ||h—hy| L2~y — 0 as n — oo. This, and (19) tell us that {W(hn)}22, is
a Cauchy sequence in L2(P). Denote their limit by W (k). This is the Wiener
integral of h € L*(R"), and is sometimes written as [ hdW [no dot!]. Its key
feature is that

P All L2cre)- (20)

W)
That is, W : L2(RN) — L?(P) is an isometry; (20) is called Wiener’s isometry
[32]. [Note that we now know how to construct the stochastic integral [ hdW
only if h € L?(R") is nonrandom.] The process {W(h )}her2mny is called
the isonormal process [11]. It is a Gaussian process its mean function is zero;
and its covariance function is C(h,g) = [g~ h(z)g(z) dz—the L*(R") inner
product—for all h,g € L>(RN).

Exercise 3.18. Prove that for all [nonrandom] h,g € L>(R") and a,b € R,

/(ah+bg)dW:a/de+b/de, (21)

almost surely.

Exercise 3.19. Let {h;}52, be a complete orthonormal system [c.0.n.s.] in
L2(RM). Then prove that {W(h;) 721 is a complete orthonormal system in
L?(P). In particular, for all Gaussian random variables Z € L?(P) that are
measurable with respect to the white noise,

Z= ZajW(hj) almost surely, with a; := Cov (Z 3 W(hj)) , o (22)

and the infinite sum converges in L?(P). This permits one possible entry
into the “Malliavin calculus.” For this, and much more, see the course by
D. Nualart in this volume.



