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Preface

The theory of quantum mechanics forms the basis for our present understanding of
physical phenomena on an atomic and sometimes macroscopic scale. Today, quantum
mechanics can be applied to most fields of science. Within engineering, important sub-
jects of practical significance include semiconductor transistors, lasers, quantum optics,
and molecular devices. As technology advances, an increasing number of new elec-
tronic and opto-electronic devices will operate in ways which can only be understood
using quantum mechanics. Over the next 30 years, fundamentally quantum devices
such as single-electron memory cells and photonic signal processing systems may well
become commonplace. Applications will emerge in any discipline that has a need to
understand, control, and modify entities on an atomic scale. As nano- and atomic-scale
structures become easier to manufacture, inereasing numbers of individuals will need
to understand quantum mechanics in order to be able to exploit these new fabrication
capabilities. Hence, one intent of this book is to provide the reader with a level of
understanding and insight that will enable him or her to make contributions to such
future applications, whatever they may be.

The book is intended for use in a one-semester introductory course in applied quantum
mechanics for engineers, material scientists, and others interested in understanding the
critical role of quantum mechanics in determining the behavior of practical devices.
To help maintain interest in this subject, I felt it was important to encourage the reader
to solve problems and to explore the possibilities of the Schrodinger equation. To
ease the way, solutions to example exercises are provided in the text, and the enclosed
CD-ROM contains computer programs written in the MATLAB language that illustrate
these solutions. The computer programs may be usefully exploited to explore the effects
of changing parameters such as temperature, particle mass, and potential within a given
problem. In addition, they may be used as a starting point in the dévelopment of designs
for quantum mechanical devices.

The structure and content of this book are influenced by experience teaching the
subject, Surprisingly, existing texts do not seem to address the interests or build on the
computing skills of today’s students. This book is designed to better match such student
needs.
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Some material in the book is of a review nature, and some material is merely an
introduction to subjects that will undoubtedly be explored in depth by those interested in
pursuing more advanced topics. The majority of the text, however, is an essentially self-
contained study of quantum mechanics for electronic and opto-electronic applications.

There are many important connections between quantumn mechanics and classical
mechanics and electromagnetism. For this and other reasons, Chapter 1 is devoted to a
review of classical concepts. This establishes a point of view with which the predictions
of quantum mechanics can be compared. In a classroom situation it is also a conve-
nient way in which to establish & uniform minimum knowledge base. In Chapter 2 the
Schrodinger wave equation is introduced and used to motivate qualitative descriptions
of atoms, semiconductor crystals, and a heterostructure diode. Chapter 3 develops the
more systematic use of the one-dimensional Schrodinger equation to describe a particle
in simple potentials. It is in this chapter that the quantum mechanical phenomenon of
tunneling is introduced. Chapter 4 is devoted to developing and using the propagation
matrix method to calculate electron scattering from a one-dimensional potential of arbi-
trary shape. Applications include resonant electron tunneling and the Kronig-Penney
model of a periodic crystal potential. The generality of the method is emphasized
by applying it to light scattering from a dielectric discontinuity. Chapter 5 introduces
some related mathematics, the generalized uncertainty relation, and the concept of den-
sity of states. Following this, the quantization of conductance is introduced. The har-
monic oscillator is discussed in Chapter 6 using the creation and annihilation operators.
Chapter 7 deals with fermion and boson distribution functions. This chapter shows how
to numerically calculate the chemical potential for a multi-electron system. Chapter 8
introduces and then applies time-dependent perturbation theory to ionized impurity
scattering in a semiconductor and spontaneous light emission from an atom. The semi-
conductor laser diode is described in Chapter 9. Finally, Chapter 10 discusses the (still
useful) time-independent perturbation theory.

Throughout this book, I have made applications to systems of practical importance
the main focus and motivation for the reader. Applications have been chosen because
of their dominant roles in today’s technologies. Understanding is, after all, only useful
if it can be applied.

California A.E] L.
2003
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MATLAB® programs

The computer requirements for the MATLAB! language are an IBM or 100% com-
patible system equipped with Intel 486, Pentium, Pentium Pro, Pentium4 processor or
equivalent. A CD-ROM drive is required for software installation. There needs to be
an 8-bit or better graphics adapter and display, a minimum of 32 MB RAM, and at
least 50 MB disk space. The operating system is Windows95, NT4, Windows2000, or
WindowsXP.

If you have not already installed MATLAB, you will need to purchase a copy and
install it on your computer.

After verifying correct installation of the MATLAB application program, copy the
directory AppliedQMmatlab on the CD-ROM to a convenient location in your computer
user directory.

Launch the MATLAB application program using the icon on the desktop or from the
start menu. The MATLAB command window will appear in your computer screen.

From the MATLAB command window use the path browser to set the path to the
location of the AppliedQMmatlab directory. Type the name of the file you wish to
execute in the MATLAB command window (do not include the ‘.m’ extension). Press
the enter key on the keyboard to run the program.

You will find that some programs prompt for input from the keyboard. Most pro-
grams display results graphically with intermediate results displayed in the MATLAB
command window.

To edit values in a program or to edit the program itself double click on the file name
to open the file editor.

You should note that the computer programs in the AppliedQMmatlab directory are
not optimized. They are written in a very simple way to minimize any possible confusion
or sources of error. The intent is that these programs be used as an aid to the study of
applied quantum mechanics. When required, integration is performed explicitly, and
in the simplest way possible. However, for exercises involving matrix diagonalization
use is made of special MATLAB functions.

Some programs make use of the functions, chempot.m, fermi.m, mu.m, runge4.m,
solve_schM.m, and Chapt9Exercise5.m reads data from the datainLL.txt data input file.

I MATLAB is a registered trademark of the MathWorks, Inc.
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Introduction

1.1 Motivation

You may ask why one needs to know about quantum mechanics. Possibly the simplest
answer is that we live in a quantum world! Engineers would like to make and control
electronic, opto-electronic, and optical devices on an atomic scale. In biology there are
molecules and cells we wish to understand and modify on an atomic scale. The same is
true in chemistry, where an important goal is the synthesis of both organic and inorganic
compounds with precise atomic composition and structure. Quantum mechanics gives
the engineer, the biologist, and the chemist the tools with which to study and control
objects on an atomic scale.

As an example, consider the deoxyribonucleic acid (DNA) molecule shown in
Fig. 1.1, The number of atoms in DNA can be so great that it is impossible to track
the position and activity of every atom. However, suppose we wish to know the effect
a particular site (or neighborhood of an atom) in a single molecule has on a chemical
reaction. Making use of quantum mechanics, engineers, biologists, and chemists can
work together to solve this problem. In one approach, laser-induced fluorescence of
a fluorophore attached to a specific site of a large molecule can be used to study the
dynamics of that individual molecule. The light emitted from the fluorophore acts as a
small beacon that provides information about the state of the molecule. This technique,
which relies on quantum mechanical photon stimulation and photon emission from
atomic states, has been used to track the behavior of single DNA molecules. '

Interdisciplinary research that uses quantum mechanics to study and control the be-
havior of atoms is, in itself, a very interesting subject. However, even within a given
discipline such as electrical engineering, there are important reasons to study quan-
tum mechanics. In the case of electrical engineering, one simple motivation is the fact
that transistor dimensions will soon approach a size where single-electron and quan-
tum effects determine device performance. Over the last few decades advances in the
complexity and performance of complementary metal-oxide~semiconductor (CMOS)

'S, Weiss, Science 283, 1676 (1999),
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Fig. 1.1. Ball and stick model of a DNA molecule. Atom types are indicated.

circuits have been caretully managed by the microelectronics industry to follow what
has become known as “Moore’s law™.* This rule-of-thumb states that the number of
transistors in silicon integrated circuits increases by a factor of 2 every 18 months. Asso-
ciated with this law is an increase in the performance of computers. The Semiconductor
Industry Association (STA) has institutionalized Moore’s Law via the “SIA Roadmap”,
which tracks and identifies advances nceded in most of the electronics industry’s tech-
nologies.* Remarkably, reductions in the size of transistors and related technology have
allowed Moore’s law to be sustained for over 35 years (see Fig. 1.2). Nevertheless. the
impossibility of continued reduction in transistor device dimensions is well illustrated
by the fact that Moore’s law predicts that dynamic random access memory (DRAM)

2 G B. Moore, Electronics 38. V14 (1965), Also reprinted in Proc. IEEE 86, 82 (1998).

: http://www sematech.org.
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Fig. 1.2. Photograph (left) of the first transistor. Brattain and Bardeen’s p—n—p point-contact
germanium transistor operated as a speech amplifier with a power gain of 18 on December 23,
1947. The device is a few millimeters in size. On the right is a scanning capacitance microscope
cross-section image of a silicon p-type metal-oxide—semiconduector fietd-effect transistor
(p-MOSFET) with an effective channel length of about 20 nm, or about 60 atoms.* This image of
a small transistor was published in 1998, 50 years after Brattain and Bardeen’s device. Image
courtesy of G. Timp, University of Illinois.

cell size will be /ess than that of an atom by the year 2030. Well before this end-
point is reached, quantum effects will dominate device performance, and conventional
electronic circuits will fail to function.

We need to learn to use quantum mechanics to make sure that we can create the
smallest, highest-performance devices possible.

Quantum mechanics is the basis for our present understanding of physical phe-
nomena on an atomic scale. Today, quantum mechanics has numerous applications in
engineering, including semiconductor transistors, lasers, and quantum optics. As tech-
nology advances, an increasing number of new electronic and opto-electronic devices
will operate in ways that can only be understood using quantum mechanics. Over the
next 20 years, fundamentally quantum devices such as single-electron memory
cells and photonic signal processing systems may well become available. It is also
likely that entirely new devices, with functionality based on the principles of quantum
mechanics, will be invented. The purpose of this book is to provide the reader with
a level of understanding and insight that will enable him or her to appreciate and to
make contributions to the development of these future, as yet unknown, applications of
quantum phenomena.

The small glimpse of our quantum world that this book provides reveals significant
differences from our everyday experience. Often we will discover that the motion
of objects does not behave according to our (classical) expectations. A simple, but
hopefully motivating, example is what happens when you throw a ball against a wall.

* Also see G. Timp et al. IEEE International Electron Devices Meeting (IEDMj Technical Digest p. 615,
Dec. 6-9, San Francisco, California, 1998 (ISBN 0780 3477 9).



Introduction

Of course, we expect the ball to bounce right back. Quantum mechanics has something
different to say. There is, under certain special circumstances, a finite chance that the
ball will appear on the other side of the wall! This effect, known as tunneling. is
fundamentally quantum mechanical and arises due to the fact that on appropriate time
and length scales particles can be described as waves. Situations in which elementary
particles such as electrons and photons tunnel are, in fact, relatively common. However,
quantum mechanical tunneling is not always limited to atomic-scale and elementary
particles. Tunneling of large (macroscopic) objects can also occur! Large objects. such
as a ball, are made up of many atomic-scale particles. The possibility that such large
objects can tunnel is one of the more amazing facts that emerges as we explore our
quantum world.

However, before diving in and learning about quantum mechanics it is worth spending
alittle time and effort reviewing some of the basics of classical mechanics and classical
electromagnetics. We do this in the next two sections. The first deals with classical
mechanics, which was first placed on a solid theoretical basis by the work of Newton and
Leibniz published at the end of the seventeenth century. The survey includes reminders
about the concepts of potential and kinetic energy and the conservation of energy in a
closed system. The important example of the one-dimensional harmonic oscillator is
then considered. The simple harmonic oscillator is extended to the case of the diatomic
linear chain, and the concept of dispersion is introduced. Going beyond mechanics. in
the following section classical electromagnetism is explored. We start by stating the
coulomb potential for charged particles, and then we use the equations that describe
electrostatics to solve practical problems. The classical concepts of capacitance and the
coulomb blockade are used as examples. Continuing our review, Maxwell’s equations
are used to study electrodynamics. The first example discussed is electromagnetic
wave propagation at the speed of light in free space. c. The key result — that power and
momentum are carried by an electromagnetic wave — is also introduced.

Following our survey of classical concepts, in Chapter 2 we touch on the experimental
basis for quantum mechanics. This includes observation of interference phenomenon
with light, which is described in terms of the linear superposition of waves. We then
discuss the important early work aimed at understanding the measured power spectrum
of black-body radiation as a function of wavelength, A. or frequency., w = 2m¢/A.
Next, we treat the photoelectric effect, which is best explained by requiring that light
be quantized into particles (called photons) of energy E = fiw. Planck’s constant 71 =
1.0545 x 1073 J s, which appears in the expression £ = %iw, is a small number that
sets the absolute scale for which quantum effects usually dominate behavior.” Since
the typical length scale for which electron energy quantization is important usually
turns out to be the size of an atom, the observation of discrete spectra for light emitted
from excited atoms is an effect that can only be explained using quantum mechanics.

3 Soinetimes # is called Planck’s reduced constant to distinguish it from 2 = 27h.



