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PREFACE

Results in the approximation of functions by polynomials with coefficients
which are integers have been appearing since that of Pal in 1914. The body of
results has grown to an extent which seems to justify the present book. The
intention here is to make these results as accessible as possible.

Aside from the intrinsic interest to the pure mathematician, there is the
likelihood of important applications to other areas of mathematics; for example,
in the simulation of transcendental functions on computers. In most computers,
fixed point arithmetic is faster than floating point arithmetic and it may be
possible to take advantage of this fact in the evaluation of integral polynomials
to create more efficient simulations. Another promising area for applications of
this research is in the design of digital filters. A central step in the design
procedure is the approximation of a desired system function by a polynomial or
rational function. Since only finitely many binary digits of accuracy actually can
be realized for the coefficients of these functions in any real filter the problem
amounts (to within a scale factor) to approximation by polynomials or rational
functions with integral coefficients. For more details one may consult this
author’s listing in the Bibliography. It would be gratifying to the author if this
book stimulates research in this direction.

Most of the results here have already appeared in the literature. However, for
the expert, we mention the following exceptions: Corollaries 7.17, 7.20, Proposi-
tions 7.16, 9.8, and Theorems 9.7, 9.9, 9.10, 9.11, A 4, A.5.

It is a pleasure to acknowledge the help of many people in the writing of this
book. It was my advisor, Edwin Hewitt, who initially brought the problem to my
attention. G. G. Lorentz suggested the book itself. In learning the subject,
especially as it relates to number theory, I am indebted to a number of valuable
conversations with David Cantor. I would also like to express my gratitude for
the support of the institutions listed at the end of the Bibliography and to the
Air Force Office of Scientific Research for partial support from grants num-
bered AFOSR 71-2030 and AFOSR 78-3599. Finally, I thank Mrs. Joyce Kepler
for her excellent services as typist.

Riverside

. February, 1976
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La vie est breve:

Un peu d’espoir,

Un peu de reve

Et puis-bonsoir! Leon Montenaeken
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INTRODUCTION

As an introduction to our subject we consider some elementary results and
their simple proofs. Besides giving an indication of the kind of results to expect,
they may be useful in themselves. Also, the techniques of proof will occur again
in establishing the stronger results.

For the present an integral polynomial is a polynomial whose coefficients all
lie in the set of rational integers {0, =1, =2, ... }. In references to the bibliog-
raphy, we give the author’s name, followed by the last two digits of the year of
publication in square brackets. For references which appeared in the nineteenth
century, all four digits are given.

The results in the theory of approximation by integral polynomials can be
summarized very roughly as follows. In contrast with the classical case of
arbitrary coefficients for the polynomials, approximation on a set X by integral
polynomials is only possible if certain conditions are satisfied by the function to
be approximated and the set X. The set X must not be too large in the sense that
its transfinite diameter must be less than unity. If S has transfinite diameter less
than unity, then there is a finite subset J(X) of X such that uniform approxima-
tion to a continuous f is possible by integral polynomials if and only if f can be
interpolated on J(X') by such polynomials. Apparently the first result concerning
the approximation of functions by integral polynomials is the following by Pal
[14]. Let f be a continuous real valued function on an interval [—a, a] with
0 < a < 1. Then f can be uniformly approximated by integral polynomials if
and only if f(0) is an integer. This is easily proved as follows (Ferguson [70b]).
The condition that f(0) be an integer is obviously necessary. Indeed, if k is an
integer and { g,} a sequence of polynomials with integral coefficients tending
uniformly to f on a set containing k, then g,(k) — f(k) as n — . But each g,(k)
is an integer; hence f(k) is a limit point of the set of integers, hence an integer
itself. Conversely, suppose f(0) is an integer. Since it suffices to approximate
f — f(0) we can assume f(0) = 0. Let ¢ > 0. Since 0 < a < 1, Z¥_, a” < o0 and
there is an odd integer k& such that

> a"<e/3. (1)

n>k

1



2 INTRODUCTION

Since k is odd, the function x* separates the points of [—a, ] and by the
Stone-Weierstrass theorem there is a polynomial p, with real coefficients such
that if p(x) = pyo(x*), —a < x < a, then

If —pll<e/3 ()
where || - || is the norm defined by ||A|| = sup, c.|h(x)|. If we let p, be the

polynomial p without its constant term, we see from the assumption f(0) = 0 and
(2) that

e = pull <e/3. (3
Finally, if we define [p,] to be the polynomial p,, with each coefficient replaced
by its integral part, then p, — [p,] is a polynomial without constant term which
involves only powers > k and with coefficients between 0 and 1; hence by (1)

lpy = [ p1]] <e/3. 4

From (2), (3), and (4) and the triangle inequality we have

W =[elli<e

which establishes Pal’s result.

It is natural to ask next what happens in case a = 1. As we have noted, a
continuous function which is approximable in the above sense must take on
integral values at —1, 0, and 1. This is not a sufficient condition, however.
Indeed, later that same year Kakeya [14] published the following generalization
of Pal’s result: a continuous real valued function f on [—1, 1] is uniformly
approximable by integral polynomials if and only if f(—1), f(0), and f(1) are
integers and f(— 1) + f(1) is even. The necessity of the latter condition is easily
seen when one notes that if p is an integral polynomial, then p(—1) + p(1) is
twice the sum of the coefficients of the even powered monomials in p. As «
tends upward to 2 we will see that, in order to be approximable, a continuous
function needs to satisfy more and more conditions of an arithmetic nature. The
number of conditions tends to infinity as « tends to 2.

When the polynomials are allowed to have arbitrary real coefficients then we
know from Weierstrass’ theorem that any continuous function can be uniformly
approximated on any closed bounded interval. In the case of approximation by
integral polynomials there are two major differences. First, as we have seen, only
those functions which satisfy certain arithmetic conditions are approximable.
The second difference is that in approximation by integral polynomials the set
on which the approximation is to take place may be so “large” that the problem
is trivial. Indeed, Kakeya [14] showed that on any interval of length >4 no
function can be uniformly approximated by integral polynomials unless it is
identically equal to such a polynomial. This is easily proved as follows.

Suppose {p,} is a sequence of integral polynomials tending uniformly to a
function f on [a, b] which is not identically equal to an integral polynomial
there. Then there exist n and m such that || p, — fI| <3, |2 — flI <3 (l-is
the uniform norm on [—1, 1]), and p, £ p,,. It follows that || p, — p,|| < 1 and
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since p, — p,, is not zero it has a leading coefficient ¢, say, which is a nonzero
integer; hence |c| > 1 and

(2 = Pm)/ ]| < 1. )

However, (p, — p,,)/c¢ is a monic polynomial (i.e., has leading coefficient
unity); hence (5) is impossible. Indeed, it is a well-known result of Cebysev
(Lorentz [66, Chapter 2, Theorem 11]) that the monic polynomial of degree n
(n > 1) which has least supremum norm on [— 1, 1] has the form 2!~" cos(n X
cos™! x), —1 < x < 1. It follows that the polynomial with the same attributes
on [—2,2] has the form 2 cos(n cos™'(x/2)), —2 < x < 2. For any positive
integer n these polynomials all have norm 2. Since translation does not change
the norm or the monicity of a polynomial, it follows that every nonconstant
monic polynomial on an interval of length greater than or equal to 4 has norm
at least 2.

In 1925 the following result by Chlodovsky [25] appeared: if [a, b] is an
interval not containing an integer, then any continuous function f on [a, 5] can
be uniformly approximated by integral polynomials. This is an immediate
consequence of Pal’s result but the proof is different. We first note that after
translating by an integer we can make 0 < a < b < 1; hence we assume this
without loss of generality. Next notice that from Weierstrass’ theorem it suffices
to show that any constant can be uniformly approximated on [a, b] by integral
polynomials. (First approximate f by a polynomial with real coefficients and
then replace each coefficient by an approximating integral polynomial.) Since
every real number can be approximated by one of the form »2~" where n and m
are integers, it suffices to approximate the constant 3. But for large k the
constant 3 is uniformly approximated on [a, b] by a function of the form
1/(2 — x*). Finally

e — L= S -y

2—-xF 1—-(x*=-1) ns=0

where the series converges uniformly on [a, b). Since any truncation of the series
is a polynomial with integral coefficients we have Chlodovsky’s result.

A final indication of some of the techniques of proof in this subject is the
following which appeared in a paper by Kantorovi¢ [31]: a continuous real
valued function f on [0, 1] is uniformly approximable by integral polynomials if
and only if f(0) and f(1) are integers. We have already seen the necessity of this
condition. Conversely, suppose the condition holds. Since it suffices to ap-
proximate f(x) — (f(1)x + f(0)(1 — x)), we can assume that f(0) = f(1) = 0. Itis
well known that the sequence of Bernstein polynomials for f converges uni-
formly to f on [0, 1] (Lorentz [66, Chapter 1, Theorem 4]) hence it suffices to
approximate

n—1

pu(x) = Z (5 )3 =
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for all sufficiently large n. The » = 0 and » = n terms are not present here since
we have assumed that f(0) = f(1) = 0. Let

£ v n =
()= 2 [A(5)(3)]ra -,
where [ -] represents the greatest integer function, i.e., [x] is the greatest integer
< x.Since J) > n (1 < » < n — 1) we have

n—1 _ 1 n—1 n n—
le”(l - x)" < El(v)x"(l - x)
< L i (")x"(l - x)"" -1
n,=o 4 n ’
by the binomial theorem. Thus, with || - || denoting the uniform norm on [0, 1],

we have || p, — ¢,|| < 1/n and since g, is an integral polynomial, we are done.

In what follows we will establish generalizations of the above results as well as
some related results. In order to be able to describe them economically we will
first introduce some notation. The results fall into two main categories. On the
one hand they characterize those functions that can be approximated uniformly
or in the L, norms by integral polynomials. These we call qualitative results.
Some examples are those results already mentioned. On the other hand there are
the quantitative results which give estimates of the rates of convergence of
integral polynomials of best approximation. An example is the result of
Kantorovi¢ which appears later in the introduction.

Throughout, X will denote a compact Hausdorff space and for any subset
S C X we will use || - || ¢ to denote the uniform (Cebysev, sup) norm on S. Thus
for any bounded, real or complex valued function f on S, we have

s = sup Lf(x)].

The interior of X will be denoted X°.

The algebra of all complex continuous functions in this norm is denoted by
C(X), and the subalgebra of real valued elements by C(X, R). We often write
|| - || in place of || - ||x. The symbols N, Z, Q, R, and C are used to denote,
respectively, the natural numbers {0, 1, 2, ... }, the rational integers {0, *1,
+ 2, ...}, the rational numbers, the real numbers, and the complex numbers. A
monic polynomial is one whose leading coefficient is unity. If A and B are two
sets, the relative complement of B in A is denoted by 4 \ B. The empty set is
denoted by . By integral polynomials we mean polynomials with integral
coefficients, where. “integral” is the adjectival form of “integer.” By integers we
mean the elements of some discrete subring R of the complex numbers C. If
R = Z we speak of rational integers. If R = Z + iZ we have the so-called
Gaussian integers. For a real number x, [x] will denote the greatest integer which
is < x, and (x) will denote the fractional part, x — [x], of x.

If X is an interval of the real line R and f is a real or complex valued function
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defined on X, then we define

E(f)= inf |f-p|x

degp<n
where the polynomials p have real coefficients and

EX(f) = inf |~ dx

where the polynomials ¢ have rational integral coefficients. As a rule we reserve
the symbol g for polynomials having integral coefficients.
As an example of a quantitative result we mention the following (Kantorovi¢
[31]): if fis a continuous function on X = [0, 1] with f(0) = f(1) = O, then
E;(f) < 2E,(f) + O(1/n). (6)
This can be proved as follows. Let n be any positive integer. Then there exists
a (unique) polynomial p, with degree <n and real coefficients such that

A-1=1-low
If = pall = E.(S) (7
Since f(0) = 0 = f(1) we see from this that | p,(0)| < E,(f) > |p,(1)|; hence
[p,,(l)x + p,(0)(1 — x)| < E,(f), 0<x <1
Setting 5,(x) = p,(x) — (P,(1)x + p,(OX1 — x)) we have

p,(0) =0=p,(1) (®)
and

s = Pall < E,(f)- ®
Thus by (7) and (9)

If = Ball < 2E,(f)- (10)

It is easy to see that any polynomial of degree at most n can be written as a
linear combination of the terms {x”(1 — x)"~"}}_,; hence for some choice of
real numbers a, (0 < » < n) we have

A = 3 axr( =

and by (8)
n—1

Pa(x) = g: ax"(1 — %)"",

As above, if we set [5,](x) = =7Z[a,]x"(1 — x)"~” then we have ||, — [5,]l| <

v

1/n. This together with (10) gives
”f—[ﬁ,,]” < 2E,(f)+ 1/n.

This establishes (6). We note in passing that much stronger results are known.
See Chapter 12.

The qualitative results are divided into four cases, as follows. If X is a
compact subset of R and R = Z we say that we are in the real case. If R is an
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arbitrary but fixed discrete subring of C with rank 2 and X a compact subset of
C" we say that we are in the complex case. The most complete results in this case
hold for n = 1. A more general case is the following. For lack of a better word
we call it the adelic case. Let T be a finite set of equivalence classes of valuations
on an algebraic number field K which contains all the Archimedean classes. For
each v in T let K, be the corresponding completion of K, X, a compact subset of
K,, and f, a K -valued continuous function on X,. The question is whether or
not there exists p in K[x] with T-integers for coefficients and such that p — f, is
uniformly small on X, for each v in 7. The final case is that in which X is any
compact Hausdorff space and ¥ is a point separating family of continuous
functions on X. The integral polynomials in this case are Z[%¥], the polynomials
in elements of ¥ with rational integral coefficients. We call this the general case.
See Chapter 9.

We give criteria in all the above cases which characterize the functions which
can be uniformly approximated by polynomials with integral coefficients. Proofs
are given in all but the adelic case where, however, the results are stated
completely and the connections with the previous cases are indicated. Although
the adelic case could have been established first and the results of the real and
complex cases derived from it, we have not done so because this would have
limited the usefulness of the qualitative part of the book to those readers
conversant with algebraic number theory.
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CHAPTER 1

DISCRETE RINGS

In the real case we will take the rational integers for the coefficients of our
integral polynomials. In the complex case, however, a larger ring is needed in
order to include some nonreal numbers among the coefficients. It happens that
we can establish our results for a whole class of rings: those which are discrete
and have rank 2. We proceed to define these terms and to establish the
properties of these rings which we will need later. We will also do the same for
the adelic case.

DEerINITION 1.1. Throughout the following, 4 will denote a fixed but arbitrary
discrete subring of C with rank 2. A subring of C which is discrete but not
necessarily of rank 2 will usually be denoted by R. By discrete we mean that 4 is
discrete as a subset of the topological space C. By rank 2 we mean that the real
linear space spanned by 4 has dimension 2.

A reader not interested in maximum generality may think of 4 as the ring of
Gaussian integers Z + iZ.

The requirement that 4 have rank 2 is actually equivalent to 4 not being a
subring of R, as follows. Suppose A has rank less than 2 and 4 Z R. Then there
exists z € A \ R. Thus z and z? are linearly dependent over R; hence there exist
a, b € R, not both zero, such that az + bz? = 0. Since z # 0 we have a + bz =
0. Since a and b are not both zero, this equation shows that neither is zero.
Solving for z shows that z € R, a contradiction. Thus, if A has rank less than 2,
then 4 C R. The converse is obvious.

The requirement that a subring 4 of C be discrete is equivalent to the
condition that 0 #z € 4 implies |z| > 1. Indeed, if 0 < |z|] < 1 and z € 4,
then z" — 0; hence 0 is a limit point of 4 and 4 is not discrete. Conversely the
condition implies that |z, — z,| > 1 for every distinct z,, z, € 4. Hence the
open unit disk centered at z € 4 meets 4 only in z which shows that z is an
isolated point of 4. Since z is any point of A4, this shows that A4 is discrete.

The following result will be of use to us as we will often have occasion to
replace the complex coefficients of an approximating polynomial by “nearest”
elements of 4.
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PROPOSITION 1.2. There is a 8 > 0 such that if z is any complex number, there
exists a € A with |z — a| <8.

ProoF. By Bourbaki [63, Theorem 1, p. 77], there exist b, and b, in C which
are linearly independent over the reals and which generate 4 as an additive
group. Since C has dimension 2 as a real vector space, there exist real numbers
r, and r, such that z = r b, + r,b,. Fori = 1 or 2 there exist integers n; and real
numbers 7/ such that r, = n; + r/ and |rj| <3. Then nb, + nyb, is in 4 and
|z — (m,by + nyby)| = |rib, + r3b,| < 3(|by| + |by)). It suffices to set § = 3(|5,| +
b)) + 1. O

A quadratic field is a field F containing the rationals Q such that the degree of
F over Q, denoted by [F : Q], is equal to two. It is well known (Weiss [63]) that
every quadratic field F is of the form Q(Vd) for a unique square-free rational
integer d different from 0 and 1. If 4 is negative (positive) the field Q(Vd) is
said to be imaginary (real). Throughout this survey the symbol L will always
denote an imaginary quadratic field. There is a connection between discrete
rings of rank 2 and imaginary quadratic fields which we proceed to establish.

DEFINITION 1.3. If R is any subring with identity of the complex numbers C,
then we say that an element z of C is integral over R if z is a root of a monic
polynomial with coefficients in R.

PRrOPOSITION 1.4. If F is a quadratic field, the elements of F which are integral
over Z form a ring containing Z.

PRrOOF. Jacobson [51, Theorem 8, p. 182]. [J

DEFINITION 1.5. The ring of elements of a quadratic field F which are integral
over Z is denoted by I.. When we have some definite quadratic field F in mind,
we often use the term integer to mean an element of I,. Throughout the
following, elements of the ring Z will be referred to as rational integers.

PROPOSITION 1.6. Let F = Q(Vd ) be a quadratic field. Then a basis for I rasa
Z-module is given by

@) {1, Vd } ifd = 1 (mod 4), and

@) {1, (1 + Vd)/2} if d = 1 (mod 4).

Proor. By Jacobson [51, Theorem 2, p. 186}, if 4 = 1 (mod 4), then I, = {m
+ nVd: m,n €Z) and it is easily seen that 1 and Vd are linearly indepen-
dent over the rational integers Z. Likewise, if 4 = 1 (mod 4), the same theorem
in Jacobson shows that

IL={m+n\/¢_i:m,nEZ}u{%((2m+l)+(2n+l)\/a):m,neZ}.

Plainly this set is just {m + n(1 + Vd)/2: m, n € Z}. To see that (ii) is
actually linearly independent over Z, suppose that m, n € Z and that

m+ n(l +Vd)/2=0. (»)

We must show that both m and n are zero. This is clear if n = 0. But if n % 0,
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(+) shows that V/d is rational, which we know to be false since [F : Q] = 2. []

PROPOSITION 1.7. If L is an imaginary quadratic field, then the ring I, is discrete
and has rank 2; that is, I, satisfies the conditions on A in Definition 1.1.

PrROOF. Write L = Q(Vd ), as usual. Then d < 0, which implies that Vd is
purely imaginary. This shows that the bases in Proposition 1.6 are linearly
independent over R, so /; has rank 2. From this linear independence we also see
that 7, is discrete (Bourbaki [63, pp. 74-75]). O

We note in passing that if F is a real quadratic field, then I does not satisfy
the conditions on 4 in Definition 1.1 as follows. Since F is real, ¥ C R and then
I C R, by definition. Thus F does not have rank 2 by the comment following
Definition 1.1. Also, I is not discrete. Indeed, it is dense in R as follows. Let
F = Q(Vd). Then a basis for I, as a Z-module is given by Proposition 1.6. The
first element of each of these bases is unity and the second element is irrational;
otherwise, Vd would be rational and Q(Vd ) = Q, a contradiction. Thus, by
the well-known theorem of Kronecker, linear combinations with rational integer
coefficients of these base elements are dense in R.

PrOPOSITION 1.8. For quadratic fields Q(\/ d, ) and Q(\/ d, ), the nonequality
Ioeyay # Loy ay implies Iowyay N Iowyay = Z-
PROOF. It is clear from Proposition 1.6 that I 4, N Igyay D Z. Suppose

that z € (Igcya,) N Igyay \ Z. The proof now splits into cases. Suppose first
that d, = d, = 1 (mod 4). Then we have

z=m+n(1+Vd )/2=m+n(1+V4d,)/2

where m, n, m’, n’ are in Z and n # 0 % n’. Thus since n # 0,

r\/;l =r,+r2\/72, r,r, €Q.
This gives Q(Vd,) = Q(r, + nVd,) = Q,Vd, ) = Q(Vd, ) which im-

plies Io 4y = Igu a4y @ contradiction. The cases d, =21 =d, (mod 4) and
d, =1=d, (mod4) (which are the same, by symmetry) and d, 21 2d,
(mod 4) follow by the same argument. []

PrROPOSITION 1.9. If R is a discrete subring of C, then R C I, for some
imaginary quadratic field.

PROOF [ADAPTED FROM POLYA [23, FOOTNOTE, p. 27]]. By Bourbaki [63, Theo-
rem 1, p. 77] we have R = aZ or R = aZ + BZ where a, 8 € C and in the
second case a and B are linearly independent over R. If R = aZ we have
a? = na; so, « = n € Z unless a = 0, in which case the conclusion is obvious.
Then we have R =nZ Cc Z C I, for all L. If R = aZ + BZ, we first show that

R N Z #* {0}. Since R is a ring we have
aB = ka + K'B, (1
B? = ma + m'B, 2)



