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Preface

The 16th Annual Symposium on Combinatorial Pattern Matching was held
on Jeju Island, Korea on June 19-22, 2005. Previous meetings were held in
Paris, London, Tucson, Padova, Asilomar, Helsinki, Laguna Beach, Aarhus,
Piscataway, Warwick, Montreal, Jerusalem, Fukuoka, Morelia, and Istanbul over
the years 1990-2004.

In response to the call for papers, CPM 2005 received a record number of
129 papers. Each submission was reviewed by at least three Program Committee
members with the assistance of external referees. Since there were many high-
quality papers, the Program Committee’s task was extremely difficult. Through
an extensive discussion the Program Committee accepted 37 of the submissions
to be presented at the conference. They constitute original research contributions
in combinatorial pattern matching and its applications.

In addition to the selected papers, CPM 2005 had three invited presentations,
by Esko Ukkonen from the University of Helsinki, Ming Li from the University
of Waterloo, and Naftali Tishby from The Hebrew University of Jerusalem.

We would like to thank all Program Committee members and external ref-
erees for their excellent work, especially given the demanding time constraints;
they gave the conference its distinctive character. We also thank all who sub-
mitted papers for consideration; they all contributed to the high quality of the
conference.

Finally, we thank the Organizing Committee members and the graduate stu-
dents who worked hard to put in place the logistical arrangements of the con-
ference. It is their dedicated contribution that made the conference possible and
enjoyable.

June 2005 Alberto Apostolico, Maxime Crochemore, and Kunsoo Park
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Sharper Upper and Lower Bounds
for an Approximation Scheme
for CONSENSUS-PATTERN

Brona Brejova, Daniel G. Brown, Ian M. Harrower,
Alejandro Lépez-Ortiz, and Toma§ Vinaf

School of Computer Science, University of Waterloo
{bbrej ova,browndg, imharrow,alopez-o, tvinar}@cs .uwaterloo.ca

Abstract. We present sharper upper and lower bounds for a known
polynomial-time approximation scheme due to Li, Ma and Wang [7] for
the CONSENSUS-PATTERN problem. This NP-hard problem is an abstrac-
tion of motif finding, a common bioinformatics discovery task. The PTAS
due to Li et al. is simple, and a preliminary implementation [8] gave rea-
sonable results in practice. However, the previously known bounds on its
performance are useless when runtimes are actually manageable. Here,
we present much sharper lower and upper bounds on the performance
of this algorithm that partially explain why its behavior is so much bet-
ter in practice than what was previously predicted in theory. We also
give specific examples of instances of the problem for which the PTAS
performs poorly in practice, and show that the asymptotic performance
bound given in the original proof matches the behaviour of a simple
variant of the algorithm on a particularly bad instance of the problem.

1 Introduction

Bioinformaticists often find themselves with several different DNA or protein
sequences that are known to share a particular function, but where the origin
of the function in the sequence is unknown. For example, suppose one has the
DNA sequence of the region surrounding several genes, known to be regulated
by a particular transcription factor. Here, the shared regulatory behavior may
be caused by a sequence element common to all, to which the transcription
factor binds. Discovering this experimentally is very expensive, so computational
approaches can be helpful to limit searches.

The motif discovery problem is an abstraction of this problem. In it, we
are given n sequences, all of length m, over an alphabet ~'. We seek a single
motif, of length L that is found approximately as a substring of all sequences.
Several variants of this problem exist. One can seek to minimize the maximum
Hamming distance between the motif and its instances in all strings (e.g. [2, 10]),
maximize the information content (minimize the entropy) of the chosen motif
instances (e.g. [1, 3, 6]), or minimize the total of the Hamming distances between
the motif and its instances [7]. This latter problem can be formally defined as
follows:

A. Apostolico, M. Crochemore, and K. Park (Eds.): CPM 2005, LNCS 3537, pp. 1-10, 2005.
© Springer-Verlag Berlin Heidelberg 2005



2 Broiia Brejova et al.

Definition 1 (CONSENSUS-PATTERN). Given: n sequences sy, ..., S, each of
length m and over an alphabet of size A. Find a substring t; of a given length
L in each of the sequences and a median string s of length L so that the total
Hamming distance ), dr (s, t;) is minimized.

Li, Ma and Wang (7] give a very simple polynomial-time approximation
scheme (PTAS) for this combinatorial motif problem. For a given value of T,
consider all choices of r substrings of length L from the n sequences. We note
explicitly here that the sampling is made with replacement, so that the same
substring may occur multiple times. For each such collection C of substrings, we
compute its consensus by identifying the most common letter in the first position
of each chosen substring, the second position, and so on, producing a motif M.
It is easy to identify for a given motif M its closest match in each of the n se-
quences, and thus its score. We do this for all n"(m — L+ 1)" possible collections
of r substrings, and pick the collection with the best score. The algorithm has
O(L(nm)"*+!) running time, and thus runs in polynomial time for any particular
value of r. Li et al. also give an upper bound on the worst-case approximation
ratio of this algorithm for r > 3:

Bk 444 (1)
ve(Var+1-3)’

where A is the alphabet size. For example, if r = 3, this approach gives an
algorithm that runs in O(L(nm)*) runtime, but whose approximation guarantee
for DNA sequences (where A = 4) is approximately 13. To achieve a reasonable
approximation ratio, 2, we would have to use r > 8 for DNA sequences, or r > 27
for protein sequences (A = 20), giving hopelessly large running times. The high
value of the proven bound would seem to suggest that the algorithm will be
useless in practice.

However, many successful combinatorial motif finders do work by generaliz-
ing from small samples in this way, such as SP-STAR [10] and CONSENSUS
(samples of 1) [3], COMBINE (samples of 2 to 3) [9], COPIA (samples of arbi-
trary size) [8]. Here, focusing on Li et al.’s PTAS, we show tighter bounds on its
performance that are much closer to reasonable numbers for practical values of r.
We also provide the first substantial lower bounds on the PTAS’s performance,
by identifying specific examples of the problem for which the algorithm performs
poorly. In the general case, for a binary alphabet, we find that the variant of
the algorithm that works by sampling without replacement performs poorly on a
particular bad example, and we conjecture that our example will also be difficult
for the original Li et al. algorithm that samples with replacement.

Our results are summarized in Table 1.

2 Basic Observations

We begin our discussion of the algorithm by noting that it is sufficient to look
at the performance of the PTAS when run on the actual instances of the motif
(which are sequences of length L), rather than on the m-letter input strings.
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Table 1. Overview of the results.

New results Previous
Condition Lower bound Upper bound| upper bound
r=1 2 2 N/A
r=3 1.5 = 1.528 ~1+4.006-(A—1)
general r 1+6(1/r7%) 1+ 6(1/4/r)

binary alphabet| conjecture: 1+ 6(1/4/7)
(proved for sampling without
replacement)
general r 1+0O(1/r% 1+ 6(A//T)
general alphabet| conjecture: 1+ ©(1//7)
(proved for sampling without
replacement)

Lemma 1. Suppose that the PTAS of Li et al. achieves approximation ratio o
for a given set s1 ..., s, of input sequences, motif length L and sample motif size
r. Suppose also that the instance of the optimal motif in sequence s; is t;. Then
the PTAS, if run only on the sequences ti,...,t,, would achieve approxrimation
ratio at least o.

Proof. We begin by noting that if m = L, the actual problem is trivial: the
optimal motif s* is the consensus of all of the input strings.

However, the PTAS still is well defined in this case, even though the actual
optimization problem is trivial. It examines all sets C of r strings, including ones
where the same string is chosen multiple times, and for each of them, computes
its consensus Mc. Then, the central motif M¢* with smallest total Hamming
distance to all s; is chosen as the motif center.

This motif center can be no better than the one found by the PTAS when run
on the entire m-letter strings, because the set of substrings we have considered
in the truncated problem is a subset of the set of substrings we would have
examined in the full problem. As such, if the original algorithm would have
found a solution whose approximation ratio is a;, we can only have done as well
or worse in the truncated problem.

This lemma is useful because if we can show that, for given values of L,
n and 7, and when run only on the optimal motif instances, the PTAS has
approximation ratio at most 3, then its approximation ratio on longer strings
can still be no worse than S.

To simplify notation, we assume that the alphabet is {0,1,...,A—1}. In the
special case we focus on, where m = L, we also always renumber the characters
in each column, so the consensus for that column is 0. This causes the overall
optimal motif to be s* = 0. This transformation only works when m = L; it
does not work when m > L.

Finally, we can encounter the problem of ties, that is, a situation when the
consensus string u of some collection C is not unique. Consider for example r = 3
and input strings 01, 02, 10, and 20. The optimal motif is 00, with cost 4. If C
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contains the first three strings, the consensus M¢ can be any of the strings 00,
01, and 02. The first of them is optimal, but the latter two have cost 5.

It is not realistic to assume that the PTAS will always guess the best of all
possible consensus strings; their number can be exponential in L. For simplicity,
we assume that the PTAS will choose the worst consensus string, and study the
performance of this “unlucky” motif finding algorithm, which in our example
would choose either 01 or 02.

3 Upper Bounds

In this section, we give better worst-case bounds on the approximation guarantee
of the algorithm in the cases where r = 1 or r = 3, corresponding to algorithms
with quadratic or quartic bounds on their runtime.

Theorem 1. The approrimation ratio of the PTAS is at most 2 for all values
of r, including r = 1, and for any alphabet size A.

Proof. Let ¢ be the cost of the optimal motif 0L, that is, the total number of
non-zero elements in all sequences. Let a; be the number of non-zero elements
in sequence s;. If the PTAS chooses sequence s; as the motif (which will happen
when the r samples from the n sequences are all of s;), the cost will increase
by at most n for every column where s; has non-zero element. Therefore the
cost will be at most ¢ + na;. The sum of this quantity over all sequences s; is
nc+mny ., a; = 2nc. Since the sum of costs for n different potential motifs
s; 1s at most 2nec, at least one of these has cost at most 2¢, which means the
approximation ratio is at most 2.

Theorem 2. The approzimation ratio of the PTAS for r =3 is at most (64 +
7V7) /54 = 1.528 regardless of the size of the alphabet.

Proof. Let p be the proportion of zeroes and g = (1 — p) be the proportion of
non-zeroes in the input sequences. The optimal cost is therefore gnL. Let b; be
the number of non-zeroes in column j.

The algorithm will examine all possible samples consisting of 3 rows, choosing
the one with the best consensus string. To get an upper bound, we will consider
the expected cost of the consensus string obtained by sampling 3 rows uniformly
at random.

For each column, we can estimate the expected cost of the column. The
consensus in a particular column will only be non-zero if two or three of the
chosen rows contain non-zero entries. If the column contains b non-zero entries,
there are b* + 3b%(n — b) such samples. Each of these samples will incur cost of
at most n in this column. The consensus will be zero for samples with two or
three zeroes (their number is (n — b)® + 3(n — b)2b). Each of these samples will
incur cost b in this column.

Thus the expected cost E(b) for a column with b non-zeroes is at most
C(b)/n®, where C(b) is the sum of costs over all triples of rows:

C(b) = [b*+3b*(n—b)|n+[(n—b)® +3(n—b)2b]b = 2b* — 56%n+ 36202 4 b, (2)
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From linearity of expectation, the expected cost over all columns is

L L
1
E(by,...,br) =Y E(bj) = = - Y _C(b)). (3)
: n :
j=1 j=1
There must exist a sample with cost at most E(by,...,br). Such a sample
achieves approximation ratio E(b1,...,br)/qnL.

We will prove by induction on L that E(by,...,br) < HgnL, where H =
(64 + 7+/7)/54. This implies that H = 1.528 is an upper bound on the approxi-
mation ratio for r = 3.

For L = 1, the approximation ratio is

E(qn)/qnL = 2¢® — 5¢*> + 3¢ + 1. (4)

The maximum of this ratio, which is equal to H, is reached when ¢ = 5=VT

Now, assume that the induction hypothesis is true for L — 1. We will prove
that it is also true for L. The expected cost of the first column is E(b;), which can
be computed with Equation 2 above. By our induction hypothesis, the expected
cost of the remaining L —1 columns is at most (gnL —b1)- H. Note that gnL —b;
is the optimal cost for the remaining L — 1 columns. Therefore:

E(b17 $F 7bL) < E(bl) + (an - bl) -H
_2b% — 5b%n + 3b%n? + (1 — H)bnd
= 3

)

+HgnL (5)

We want to prove, that (*) is never positive for b in the range 0 < b < n.
Indeed, (*) can be simplified as (b/(108n3))- (66— (5+2+/7)n)- (6b— (5—+/7)n)?.
The first and third factors are always non-negative, and the second factor is
non-positive for all b < n. Therefore the whole term (*) is never positive on the
interval.

It is, in fact, possible to easily characterize the “worst-case” scenario that
maximizes F(by,...,br): this is achieved when the non-zero elements are dis-
tributed equally among a subset of the columns as follows.

Lemma 2. For a given q, n, and L, E(by,...,br) is mazimized, when for some
k<L, by,....,bp =0, and bgy1 = bgy2 = ... = by, < n (if we allow by,...,by to
be non-integral).

Proof. (by induction on L). For L = 1, the hypothesis holds trivially.

Let us assume that the hypothesis holds for all L' < L. Without loss of
generality, we assume that the columns are sorted by b;. If by = 0, the hypothesis
holds trivially from the induction hypothesis. Let b; > 0. Then, by the induction
hypothesis, all the rest of the columns must by distributed equally (there are no
columns with b; = 0, since b; is the smallest). The cost will be therefore:

gnL — bl)

C(b1)+(L—1)-C( = (6)



