

886279886

COMPUTER SCIENCE TEXTS

Man-Computer Interfaces

R. B. COATS
and
I. VLAEMINKE
Both Principal Lecturers
in Computing -
Leicester Polytechnic

E8862986

BLACKWELL SCIENTIFIC PUBLICATIONS
OXFORD LONDON EDINBURGH

BOSTON PALO ALTO MELBOURNE

© 1987 by

Blackwell Scientific Publications

Editorial offices:

Osney Mead, Oxford OX2 0EL
(Orders: Tel. 0865 240201)

8 John Street, London WCIN 2ES

23 Ainslie Place, Edinburgh EH3 6AJ

52 Beacon Street, Boston
Massachusetts 02108, USA

667 Lytton Avenue, Palo Alto
California 94301, USA

107 Barry Street, Carlton
Victoria 3053, Australia

All rights reserved. No part of this
publication may be reproduced, stored
in a retrieval system, or transmitted, in
any form, or by any means, electronic,
mechanical, photocopying, recording
or otherwise without the prior
permission of the copyright owner.

First published 1987

Set by V & M Graphics Ltd,
Aylesbury, Bucks

Printed and bound in Great Britain by
Mackays of Chatham, Kent

DISTRIBUTORS

USA and Canada
Blackwell Scientific Publications Inc
PO Box 50009, Palo Alto
California 94303
(Orders: Tel. (415) 965-4081)

Australia
Blackwell Scientific Publications
(Australia) Pty Ltd
107 Barry Street
Carlton, Victoria 3053
(Orders: Tel. (03) 347 0300)

British Library
Cataloguing in Publication Data
Coats, R. B.
Man-computer interfaces: an
introduction to software design
and implementation.
1. Computer interfaces
L. Title II. Vlaeminke, I.
004.6 TK7887.5

ISBN 0-632-01542-X

Library of Congress

Coats, Robert B.
Man-computer interfaces: an
introduction to software design and
implementation/R. B. Coats & I.
Vlaeminke.
Includes index.
ISBN 0-632-01542-X
1. Computer software—
Development. 2. Electronic
data processing—Psychological
aspects. 3. System design.
I. Vlaeminke, I.
IL. Title
QA76.76.D47C63 1987
005—dc19 87-16110

Preface

The last ten years have seen an increasing recognition of the important role
played by the man-computer interface in the success of a computer system.
Interest in this aspect of systems development has grown not only amongst
computer scientists but also amongst ergonomists, psychologists, sociologists
and graphic designers, reflecting its multi-disciplinary nature. Indeed, it has
frequently been suggested that for many applications, successful development
requires a design team whose members represent these various disciplines.

This text is aimed at undergraduates following a course in Computer
Science, the future providers of the software expertise in such a multi-
disciplinary team. It focuses on the facilities which can be provided by
software in the interface and on how they can be implemented, and proposes
a strategy for this aspect of systems design. It provides an introduction to the
basic facilities and concepts of text-based interfaces in the conviction that
competence in these basics is a prerequisite to an understanding of more
advanced interfaces and to an appreciation of the possibilities for further
advances. In the authors’ opinion, graphical interaction deserves a separate
treatment and is not covered, other than in the obvious overlap in window-
based systems.

The major theme underlying the book is that the interface software can be
identified as a distinct element which can be separated from the task
processing in any system. Furthermore, the interface can be subdivided into
a number of layers, whose functions can be represented by generalised
abstractions. The concept of abstraction is introduced by deriving abstrac-
tions for basic input and output processes, and illustrating their practical
implementation. A common abstraction is then developed for the traditional
dialogue structures (Question and Answer, menus, forms and commands) to
demonstrate that these represent simple variants of the same basic structure.
This interpretation is used to explain the features of each structure and to
justify accepted guidelines on their use.

The dialogue abstractions are extended to incorporate techniques which
ameliorate the impact of system response on users of the system and which
permit a limited form of adaptation, within a system, to the requirements and

Xii Preface

preferences of different users. The input and output abstractions are extended
to systems which support multiple, overlapping windows and a direct
manipulation style of interface.

The identification of these abstractions is fundamental to the proposed
design strategy since, by encouraging the modularisation of the interface and
the development of module libraries, it improves consistency and portability
and permits a prototyping approach to development. Transition network and
production system representations are described to illustrate that dialogues
based on the abstractions can be generated automatically.

Although the emphasis is on software techniques and a design strategy for
their utilisation, accepted guidelines for other aspects of interface design are
explored, and an attempt is made to explain the rationales which underpin
them. The level of detail is based on the criterion that the ‘software member’
of the design team must be capable of appreciating inputs from other
disciplines in deciding the data values to be supplied to the abstractions in
different situations. The final chapter provides a brief introduction to more
advanced interfaces which extend the range of input/output channels or the
adaptation to different user characteristics.

Practical illustration of how the abstractions can be implemented requires
a choice of programming language and of workstation facilities. The
language chosen is PASCAL, not because it represents the optimal choice for
implementation, but because it is commonly used to teach programming and
because its syntax is easily readable by someone familiar with other
procedural languages; the ideas illustrated in PASCAL are easily transferred
to other langauges such as Modula-2, C or APL. The workstation assumed in
most examples is one with facilities equivalent to a PC-compatible equipped
with a mechanical mouse. Again this choice is dictated by popularity, rather
than innate virtue, and because these facilities can be considered a base
standard for a typical workstation; examples are given of the facilities offered
both by dumb terminals and by more sophisticated workstations.

The practical exercises which accompany a course on programming
typically require some design of input and output, but programming language
texts necessarily concentrate on the mechanics of the input and output
functions provided within the particular programming language. This book
is designed to complement a programming course by discussing the
enhancements to these raw input and output functions, both in structure and
in facilities, which are necessary for a successful interface, and by giving
practical illustrations of how they can be accomplished. Most chapters are
followed by sets of discussion and programming exercises to provide practical

Preface Xiii

exposure to the concepts. A design exercise for a simple transaction
processing system runs through the early chapters. The Appendices contain
two other case studies and listings of all machine-independent code referenced
in the text.

The book is intended as an introductory text; it is not a summary of the
latest research findings. The bibliographies which accompany each chapter
are not comprehensive but are intended to provide a next step in following up
the concepts introduced. It is the authors’ conviction that an appreciation of
the published guidelines for interface design is best achieved by experimenting
with different types of interface; for example, the reader should experience for
himself the confusion which results when a screen is filled with a multiplicity
of different highlights. For this reason, the text includes only a limited number
of illustrations drawn from commercially available systems; these are used to
illustrate specific techniques rather than as exemplars of interface design.
Interaction with a system is a dynamic process whose characteristics are not
easily assessed from a static snapshot; at the end of various chapters, the
reader is specifically encouraged to try out examples of typical packages to
experience these dynamics.

The authors gratefully acknowledge the assistance of Apollo Computer
Inc., CASE plc., City Business Systems and Digital Research Ltd. for their
permissions to copy illustrations. Thanks are also due to a number of
colleagues, and in particular to Ian Marshall, for their suggestions on
revisions to the text.

Acknowledgements

Apollo and Domain are registered trademarks of Apollo Computer Inc.
CP/M, GEM and Desktop are registered trademarks of Digital Research Inc.
IBM is a registered trademark of International Business Machines Corp.
Lotus and 1-2-3 are registered trademarks of Lotus Development Corp.
MS-DOS is a registered trademark of Microsoft Corp.

UNIX is a registered trademark of Bell Laboratories.

WordStar is a registered trademark of MicroPro International Corp.

8862986

Contents

Preface, xi

1 The significance of the man-computer interface, 1
1.1 What is the interface?, 1
1.2 What factors affect convenience?, 2
1.3 Why is convenience significant?, 4
1.4 What are the difficulties in designing the interface?, 7
1.5 A strategy for design of the man-computer interface, 8
1.6 Measuring the success of the design, 13
1.7 Summary, 14
Discussion exercises, 15
Further reading, 15

2 The constituents of the man-computer interface, 17
2.1 'What does the interface comprise?, 17
2.2 Input/output processes, 19
2.3 The dialogue process, 21
2.4 Messages, 23
2.5 Input messages, 26

2.6 Validating the input, 28 _ :
2.7 Prompts, 31 et N\
2.8 Summary, 32 €)

|
Discussion exercises, 33 % s
Programming exercises, 35 ¢
Further reading, 36

3 Input/output processes, 37
3.1 Introduction, 37
3.2 Output of a text message, 38
3.3 Input of a text message, 48
3.4 Positioning, pointing and picking, 57
3.5 Input and output of graphical messages, 67
3.6 Summary, 69

Contents

Discussion exercises, 70
Programming exercises, 71
Further reading, 72

Dialogue structures — question and answer and the menu, 74
4.1 Introduction, 74

4.2 What makes a ‘good’ dialogue?, 75

4.3 The Question and Answer structure, 80

4.4 The menu structure, 88

4.5 The suppressed menu, 103

4.6 Summary, 105

Programming exercises, 106

Further reading, 108

Dialogue structures — forms, commands and hybrids, 109

5.1 Introduction, 109

5.2 The form filling structure, 109

5.3 The command language structure, 120

5.4 Hybrid dialogues, 125

5.5 The spreadsheet, 127

5.6 Implementing a hybrid structure, 131

5.7 Mode and modeless operation, 135

5.8 Input events — handling input from several input
processors, 136

5.9 Summary, 138

Discussion exercises, 142

Programming exercises, 142

Further reading, 144

User Support, 145

6.1 Introduction, 145

6.2 An unsuccessful dialogue, 145
6.3 Error messages, 149

6.4 Help messages, 158

6.5 Documentation, 164

6.6 Codes, 167

6.7 Summary, 169

Discussion exercises, 170

Contents vii

Programming exercises, 171
Further reading, 172

Screen formatting, 173

ek
7.2
7.3
7.4
TS
7.6
Tl
7.8
7.9

Introduction, 173

General guidelines for screen layouts, 174

What information should be displayed on the screen?, 175
How should the information be displayed?, 179

Where should the information be displayed?, 182
Highlighting, 187

Producing a draft design, 190

Evaluating the design, 192

Screen design aids, 194

7.10 Summary, 196
Discussion exercises, 197
Programming exercises, 198
Further reading, 199

Response time, 200

8.1
8.2
8.3
8.4
8.5
8.6

What is response time?, 200

Psychological implications of response, 201
Recommendations on acceptable response times, 204
Why is acceptable response hard to achieve?, 205
What can be done to alleviate these problems?, 207
Summary, 212

Discussion exercises, 212
Programming exercises, 213
Further reading, 213

Simple adaptation, 215

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8

Introduction, 215

Flexibility in matching, 216

Synonyms, 221

Defaults, 223

Type ahead and answer ahead, 225
Command language as answer ahead, 229
Multi-level help, 231

Multi-language considerations, 232

viii

10

11

12

Contents

9.9 Summary, 234
Discussion exercises, 235
Programming exercises, 236
Further reading, 237

WIMPs, 238

10.1 Introduction, 238

10.2 The underlying analogies, 239

10.3 Windows, 242

10.4 Icons, 257

10.5 Direct manipulation, 260

10.6 Menu windows and dialogue boxes, 265
10.7 The benefits and drawbacks of WIMPs, 267
10.8 Design criteria for WIMPs, 270

10.9 Summary, 271

Further reading, 272

Dialogue specification, 274

11.1 Introduction, 274

11.2 Transition networks, 274

11.3 Dialogue processing at a node, 279
11.4 Transitions based on input format, 282
11.5 The dialogue hierarchy, 285

11.6 Production systems, 286

11.7 Implementation considerations, 289
11.8 Summary, 294

Programming exercises, 294

Further reading, 295

Intelligent interfaces, 296

12.1 Introduction, 296

12.2 Voice and vision input and output, 298
12.3 Natural language processing, 301

12.4 Graceful adaptation and user models, 305
12.5 Summary and conclusion, 308

Further Reading, 310

Appendices
A Mailsale, 311

Contents ix

B COWCUT — a retail butcher’s carcass-cutting management
aid, 313

C Ariel — an electronic mail system, 316

D Libraries, 317

E STRING library, 322

F Device driver library, 324

G Input/output library, 330

H Q & A library, 350

I MCI library, 368

Index, 377

Chapter 1

The significance of the man-computer interface

1.1 What is the Interface?

Every computer system can be measured against two criteria:
Correctness and Convenience
With the traditional concept of a computer system as illustrated in Fig. 1.1,

correctness means that if suitable input values are supplied to the process it
will produce the desired output values.

Input
Process

Output

Fig. 1.1.

Systems staff have traditionally emphasised this computational correctness;
much effort has been applied to ways both of producing software and of
testing it in an attempt to achieve correctness. Whilst few, if any, of these
would claim to have produced commercial software which operates 100%
correctly, the majority of systems perform reasonably well against this
criterion, and most are at least consistent in the results they produce.

Much less effort has been devoted to the concept of convenience. Although
any computer system includes at least one human user within its boundary,
systems have been viewed as undertaking a task — such as maintaining a sales
ledger — rather than as a tool used by a human to assist in achieving that task.
It is the sales clerks who maintain the company’s sales ledger not the
computer system! The emphasis on the correctness of the values has tended
to be at the expense of considering exactly how these values should be input
or output; function has been the significant factor rather than form.

The input and output elements are too often viewed by software producers
as a series of rather tedious read and write operations which must be gone
through before one gets to ‘the interesting bit of the program’; have you ever
heard a programmer claim that they ‘produced a really great write statement
today’? However, the results of these read and write operations, and the

1

2 Chapter 1

terminal devices on which they occur, are often all the human user sees of the
computer system. : ‘

The user of a computer-based system has a right to expect not only that the
system produces correct values but also that it is easy to use. This implies that
the human does not have to alter his natural work pattern significantly in
order to use the computer system. In most cases, the actual processing of the
input values to produce the output values has no impact on this since the user
does not experience it directly and has no need, or desire, to know how it is
done. The actual mechanics by which the steering of a car is transferred from
steering wheel to the road wheels is of little consequence to the motorist; on
the other hand, the shape and position of the steering wheel has an enormous
impact on him. Similarly, the nature and positioning of the workstation, the
format in which input is requested, and the layout of messages produced by
the system, have an enormous impact on the human user of the computer
system.

The man-computer interface encompasses all those aspects of a computer-
based system which the user experiences directly.

1.2 What Factors Affect Convenience?

For his usage to be ‘convenient’, the user must feel ‘comfortable’ when
interacting with the system. Thus, the factors which affect convenience are
those which influence this feeling of comfort. They can be divided into the
three broad classifications of Fig. 1.2.

Classification Affected by Influences

social factors organisational climate ~ emotional comfort
physical ergonomics hardware physical comfort
psychological ergonomics software design cognitive comfort

Fig. 1.2. Factors influencing a user’s comfort.

The general climate within the organisation — such aspects as manage-
ment style and job security — and the way in which a prospective system is
introduced, can build preconceptions long before the actual system is
encountered. The functions which are allotted to the user by the system, and
the way in which these human functions must be carried out, can disrupt
traditional social groupings in the workplace, isolate the user from normal
social interaction or disturb relationships with superiors. These social factors
will tend to reinforce or to allay a user’s fears about a system. A great deal has

The significance of the man—-computer interface 3

been written about this aspect of system development and about the
involvement of users in the development process. We will be concerned only

" with how the use of a particular software design strategy can facilitate this
involvement.

Assuming that a user approaches a system with no negative preconcep-
tions, the ergonomics or usability of the actual system can significantly
improve or worsen his attitude towards it. The main aspects of ergonomics
are shown in Figure 1.3.

— design and arrangement of equipment
— design of the dialogue

— availability and reliability of the system
— responsiveness of the system

Fig. 1.3. The ergonomic aspects.

The way in which the equipment, both computer hardware and any
ancillary equipment, is designed and arranged into a workstation will affect
the physical comfort of the user when using the system. Can the user read the
characters on the screen easily, or has it been positioned so that the sun causes
a glare which makes the user peer at the screen through half-closed eyes? Can
the keyboard be positioned so that the user can reach the keys and any other
items required without having to stretch unnaturally? For example, in some
supermarkets the checkout tills are positioned in such a way that the cashiers
have to twist and reach for each item being purchased — resulting in a lot of
tired cashiers at the end of a day! Has the system designer given as much
thought to the seating and worktop as to the terminal which rests upon it, or
did he just use any old table and chair which happened to be spare? The design
of equipment is the province of ergonomics; with most computer systems, the
systems designer selects off-the-shelf equipment rather than designing it from
scratch.

The second aspect of the interface might be termed psychological
ergonomics; just as physical ergonomics is concerned with matching the
system to human physical processes, psychological ergonomics is concerned
with matching it to human cognitive processes. To illustrate the difference,
consider the process of reading a message from a screen. A user who cannot
physically discern the characters because of glare or poor contrast will suffer
physical discomfort. The user who manages to read the characters but who
cannot comprehend the message because it is phrased in computer jargon, or
because it is laid out in some eccentric fashion, will suffer psychological
discomfort. There is little point in sparing a user the discomfort of back ache

4 Chapter 1

or eye strain if the system makes his brain ache instead! This aspect, called the
dialogue, is an area of systems design which software producers can very easily
influence for good or ill, and its design is the major concern of this book.

Two aspects closely related to psychological ergonomics, but sufficiently
important to warrant individual treatment, are the availability and the
responsiveness of the system.

Can the user gain access whenever and wherever he needs to? The designer
should ensure that the times when the system can be expected to be available
match the hours when the user will require it. Furthermore, the reliability of
the system must be such that the user can reasonably expect it to be available
when it is supposed to be. It is not only the total amount of time lost due to
faults which is significant but also the number of faults; a series of losses in a
network link, each lasting no more than a few seconds, can be much more
frustrating than a single failure lasting an hour. The number of workstations
must be adequate to support the number of prospective users. Unless usage
is very casual or work patterns are not affected if a workstation is not
immediately available, this generally implies individual workstations located
within the user’s normal work area. There are a surprising number of systems
which provide users with an instantaneous answer to a query after they have
walked up two flights of stairs and queued for ten minutes for a workstation
to become free. Economising on the number of workstations is a false
economy.

Almost as frustrating as being unable to access the system at all, is being
expected to wait 20 seconds or longer for the system to respond to the last
input. Even worse is the case where some days it takes two seconds to respond
and other days it takes 20 seconds; variable response is a marvellous way to
keep the user guessing whether the system has crashed or not! The provision
of acceptable response is one of the more technically demanding and costly
aspects of interactive system development, and is discussed in Chapter 8.

1.3 Why is Convenience Significant?

In the 1960s and early 1970s the user’s convenience was largely ignored by
systems designers. The large mainframe was a precious item to be cosseted
with air conditioning and an army of operators; humans fitted in with the
machine rather than vice versa.

With the demise of batch processing came an increasing realisation that
convenience was a major factor in the success or failure of a system; this

The significance of the man-computer interface 5

awareness was heightened as systems development moved away from the
clerical bread-and-butter data processing applications into the area of
decision-support for management. For the system to be effective, it is not
sufficient for the hardware and software to produce the correct output values
for given input values — the human’s performance is critical to success.

Humans have emotional, physiological and psychological needs which
must be met in any activity if that activity is to be performed effectively. A user
who is confused, frustrated or stressed physically or psychologically cannot
perform well. The component of a system which causes the presence or
absence of stress is the man-computer interface — that is what the user
experiences when interacting with the system. Some cynics might observe that
this awareness has yet to dawn on the designers of many microcomputer
operating systems!

The human body is a mechanism which has limitations and tolerances
within which it must work. Our eyes require images to be within a particular
size range, of a certain level of brightness, to contrast sufficiently against their
background, and to be located a suitable distance away if they are to be
viewed in comfort. Some colours are perceived more easily than others, some
colour juxtapositions aid discrimination whilst others are confusing. We can
move our limbs only over certain ranges, our reach is limited, and our hands
have limits on their dexterity. If we are to maintain a particular position for
any length of time our bodies need adequate support, and so on.

These physical limitations are commonly recognised. However, the
limitations of our brains are less well understood and are more often
overlooked. Whilst we have an extremely capacious long term memory, we
have a very limited short term memory. Short term memory is often
considered as a series of input and output buffers in which intermediate data
can be stored during any activity. Like the buffers in a computer system, this
memory has a very limited capacity and can be easily overloaded. Long term
memory seems to have an unlimited capacity and humans can retrieve
information from it very rapidly. If we undertake an activity regularly, we can
easily ‘remember’ it without overloading the short term memory; if we do it
often enough, it becomes almost subconscious. However, if we carry out an
activity irregularly, our short term memory is fully occupied throughout the
activity.

Even if the basic activity itself is familiar, we can overload the short term
memory with a particular instance of that activity. Consider the case of a clerk
looking up the details of an invoice. These details are displayed across two
screens because there is too much detail to fit onto one. The clerk may have

6 Chapter 1

carried out the task many times, and may well be able to tell you without
difficulty which fields are on which screen, since he will have seen the same
field captions many times. Remembering the values for a particular invoice
from one screen to the next will be much more difficult, if not impossible.

Humans bring to every activity a set of expectations of how that activity
should proceed. These expectations — a mental model of the activity — are
based on their previous experience. Long term memory is often viewed as a
store of patterns representing different models against which humans seek to
match mental stimuli; rather than storing low level details, humans
reconstruct this detail information from higher level patterns. Most people
expect to read a screen from left to right and from top to bottom, just as they
read a printed page. They look for order and structure in a display, and seek
clues as to the relative importance of different items.

Humans are remarkably adaptable. They can contort themselves into
weird positions and operate under the most unfavourable conditions — just
look at programmers at their workstations! They can supplement their short
term memory with pieces of paper. They can adapt the way in which they
undertake a task. They can acquire new models which run contrary to their
previous expectations and impose order in a display where none existed. But
this adjustment causes stress which may exhibit itself in confusion, frustration
or physical aches and pains.

The results of this stress can take various forms. Where usage is
discretionary the user may simply opt not to use the system. For example,
take the situation where a manager could use a financial planning system or
he could do the exercise manually using a calculator. If his perceptions of the
system are unfavourable because of poor availability, response, physical
discomfort, or whatever, he might choose the manual solution. Where the
user has no choice, for example a clerk operating a sales ledger or order
processing system, it might result in illness or persistent absence, or in an
unacceptable level of errors. These errors are not deliberate attempts to
sabotage the system — it is possible to arrange the inputs and outputs of a
computer system so that it is difficult to get them right!

Many systems in use today exhibit problems caused by failure of the
interface to meet the users needs in these areas. They were not deliberately
designed to do so. Thus, one must examine why so many have failed.

