Lecture Notes Iin
Mathematics

Edited by A. Dold and B. Eckmann

1274

N. Christopher Phillips

Equivariant K-Theory and
Freeness of Group Actions
on C*-Algebras

SpringerVerlag

Berlin Heidelberg New York London Paris Tokyo



Author

N. Christopher Phillips
Department of Mathematics, University of California
Los Angeles, CA 90024-1555, USA

Mathematics Subject Classification (1985): Primary: 4655, 46L.80, 46 M 20
Secondary: 19K33, 19K99, 19147

ISBN 3-540-18277-2 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-18277-2 Springer-Verlag New York Berlin Heidelberg

Library of Congress Cataleging-in-Publication Data. Phillips, N. Christopher (Norman Christopher),
1956-. Equivariant K-theory and freeness of group actions on C*-algebras. (Lecture notes in
mathematics ; 1274) Bibliography: p. Includes index. 1. K-theory. 2. C*-algebras. 3. Lie groups.
I. Title. Il. Series: Lecture notes in mathematics (Springer-Verlag) ; 1274. QA3.L28no 1274510s
87-23345 [QA612.33] [512'.55]

ISBN 0-387-18277-2 (U.S.)

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation,
broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication
of this publication or parts thereof is only permitted under the provisions of the German Copyright
Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always be
paid. Violations fall under the prosecution act of the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1987
Printed in Germany

Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
2146/3140-543210



To

IR TE

Weng Kai-Shyang



Acknowledgments

I would like to thank a number of people for their help and encouragement dur-
ing the preparation of this book. Graeme Segal first called my attention to the
paper from which I learned about the relation between equivariant K-theory and
freeness of actions. | have had valuable discussions with, among others, Claude
Schochet concerning Kiinneth theorems, [. M. Singer concerning pseudodifferential
operators, Nigel Higson concerning extendible prequasihomomorphisms, and
Jonathan Rosenberg concerning projective unitary representations. David Handel-
man suggested the main result of section 9.2 and its proof.

Most of all, however, I would like to thank Marc Rieffel. Many of the results in this
book first appeared in my Ph.D. thesis written under his direction, and many others
were first proved while | was working on my thesis. His patience, encouragement,
and suggestions, both before and after I received my Ph.D,, have been extremely
valuable, and he has helped eliminate many obscurities in the exposition. He was
also kind enough to show me some of his unpublished research notes, and to allow
me to use some of the material from them in chapter 7.

This book is based on the author’s Ph.D. thesis written at the University of Cali-
fornia at Berkeley. However, it incorporates substantial revisions and many addi-
tional results. The research reported here has been partially supported by a
National Science Foundation Graduate Fellowship, by the Mathematical Sciences
Research Institute (NSF Grant 8120790), and by a National Science Foundation
Postdoctoral Fellowship. All of this support is gratefully acknowledged. Thanks are
also due to Marsha Colby, who converted an enormous number of sometimes rather
illegible handwritten pages into the computer files from which this manuscript was
produced, and who, with rare exceptions, was able to persuade a University of Cali-
fornia computer to print many symbols that it had never been intended to make.



Preface

This book is about equivariant K-theory and K-theoretic conditions for freeness
of actions of compact Lie groups on C*-algebras. The introduction, explaining in
detail the motivation for this work, is followed by two primarily expository chapters,
one each on equivariant K-theory for C*-algebras and equivariant KK-theory for
C*-algebras. The remaining six chapters contain the results of the author’s
research on K-theoretic conditions for freeness of actions on C*-algebras. We
assume throughout familiarity with the theory of C*-algebras, including crossed
product C*-algebras and ordinary (that is, not equivariant) K-theory of C*-
algebras.

Our work is motivated by the observation that, given an action of a compact Lie
group on a compact Hausdorff space, one can determine whether the action is free
solely by examining the equivariant K-theory of the space for the given action.
(Details, with proofs, are given in chapter 1.) Now the category of compact Haus-
dorff spaces is contravariantly equivalent to the category of commutative unital
C*-algebras via the functor assigning to each space the algebra of continuous
complex-valued functions on the space. Therefore the relation between equivariant
K-theory and freeness can be interpreted as an assertion about actions of compact
Lie groups on commutative unital C*-algebras. In view of Lthe recent successes of
noncommutative algebraic topology, in which general C*-algebras are regarded as
“noncommutative locally compact spaces,” we are naturally led to try to generalize
the results mentioned above to general C*-algebras. However, no completely satis-
factory notion of freeness of an action on a C*-algebra is known. We therefore
define and study conditions on the equivariant K-theory of a C*-algebra which, in
case the algebra is commutative, imply that the action on the underlying space is

free.

Chapters 2 and 3 develop the necessary background material on C*-algebraic
equivariant K-theory and KK-theory respectively. Neither chaptler depends
significantly on the rest of the book. Chapter 2 consists mostly of material which
has previously appeared only in somewhat condensed form, or which has never
been published but straightforwardly generalizes ordinary K-theory. It is fairly
comprehensive; however, there are some results purely about equivariant K-theory
elsewhere, especially in sections 5.1 and 6.1-6.4. Previous knowledge of ordinary
K-theory for C*-algebras is assumed, but is used only at a few points, most notably
for the six term exact sequence and Bott periodicity. Chapter 3 develops equivari-
ant KK-theory from Cuntz’ quasihomomorphism point of view. Most of the material
has appeared previously but again only in very condensed form. We prove only the
basic facts, up to the product and Bott periodicity, omitting however the construc-
tion of the six term exact sequences, for which we refer to a paper of Cuntz and
Skandalis. Again, some additional material can be found elsewhere, particularly in

sections 5.1 and 9.7.
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In chapter 4, we define our K-theoretic notions of freeness. There and in the
next two chapters we consider consistency theorems, the analogs of such facts as
the freeness of the restriction of a free action to an invariant subspace or a closed
subgroup. Most of the appropriate statements are either easily proved or, in bad
cases, easily disproved. Two topics, nameiy actions of subgroups and actions on
tensor products, present greater difficulties. Each of these topics gets a chapter to
itself, and the gaps between our theorems and our counterexamples are larger than
was generally the case in chapter 4.

Chapter 7 is devoted to the relation between our K-theoretic notions of freeness
and previously known measures of freeness, especially Kishimoto’s strong Connes
spectrum. Our conditions are, unfortunately, trivially satisfied by a trivial action on
a simple C*-algebra whose K-groups are all zero. (This kind of difficulty cannot
arise in the context of spaces.) However, if the K-theory of the C*-algebra is
sufficiently nontrivial, and if the group is sufficiently small, then K-theoretic free-
ness does imply other forms of freeness.

The remaining two chapters consider the implications of our K-theoretic condi-
tions for freeness for actions on two special classes of C*-algebras, namely type |
and AF algebras. In both cases, we obtain analytic characterizations of several of
our K-theoretic freeness conditions. In the type I case, one of our conditions is
shown to be equivalent to freeness of the corresponding action on the primitive
ideal space. For AF algebras, we obtain results of a somewhat different nature but
which should not be surprising in view of known results about the ordinary K-theory
of AF algebras. Our results here have led us to hope that there might be a good ana-
Iytic notion of freeness which implies K-theoretic freeness in general and coincides
with it on these special classes of C*-algebras. However, we have made no attempt

to investigate this question.
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Chapter 1

Introduction: The Commutative Case

1.1. Introduction

Recall that an action of a group & on a space X is said to be freeif for g € G,

g #e,and z € X, one has gz #z. Since the commutative C*-algebras are exactly the
algebras Cp(X) of continuous complex valued functions vanishing at infinity on
locally compact HausdorfT spaces X, we can lransfer the definition of freeness to
commutative C*-algebras as follows: we say that a continuous action of a group G
on Co(X) is free if the corresponding action on X is free. Viewing general C*-
algebras as “noncommutative topological spaces,” we now seek generalizations of
the concept of freeness to the case of actions of groups on noncommutative C*-
algebras.

The starting point of this work is a relation belween freeness of a continuous
action of a compact Lie group G on a compact space X and the equivariant K-theory
of X. Before stating it, we introduce some notation. Recall ([98]) that equivariant
K-theory is a generalized cohomology theory on locally compact G-spaces (that is,
spaces carrying continuous actions of G), where G is a compact group. This theory
is analogous to ordinary K-theory of locally compact spaces. The equivariant K-
groups of a locally compact G-space X are written K2(X) and KA(X), and as usual we
let K%(X) stand for the direct sum K2(X)@® K2(X). These groups are in fact modules
over the representation ring R(G) of G, as defined in [97]. The ring R(G) contains a
distinguished ideal, namely the augmentation ideal /(G). (It is defined in the exam-
ple preceding proposition 3.8 of [97]. The definitions of K(X), R(G), and I(G) will all
be given in detail in chapter 2.)

We are now in a position to state the relations between freeness and equivariant
K-theory. This result is essentially due to Atiyah and Segal ([6], proposition 4.3, and
[98], proposition 4.1).

1.1.1 Theorem. Let G be a compact Lie group, and let X be a compact Hausdorff G-

space. Then the following are equivalent:
(1) G acts freely on X.
(2) The natural map K*(X/ G) —> K}(X) is an isomorphism.
(8) K&(X) is complete in the I(G)-adic topology.
(4) K¥(X) is complete and Hausdorff in the /(G)-adic topology.
(5) K&(X) is discrete in the I(G)-adic topology.
(6) For all prime ideals P ¢ R(G) such that P 271(G), the localization Kj(X)p is

Zero.



In condition (R), the space X/ @ is the space of orbits of the action of G on X.
Since G is compact, X/ G is a compact Hausdorff space with the quotient topology.
The map sends the class [Z] of a vector bundle £ over X/ G to the class of the pull-
back of £ via the quotient map. More details will be given in the next section.

The methods used to generalize ordinary K-theory to C*-algebras can also be
used to generalize equivariant K-theory to C*-algebras carrying continuous actions
of compact groups. (The resulting theory is defined in, for example, [51]. See also
[55]. We will develop its properties in detail in chapter 2.) Since equivariant K-
theory is a covariant functor on C*-algebras, we denote the equivariant K-theory of
a C*-algebra A carrying a continuous action of a compact group & by K{,i(A). We
then have K$(Co(X)) ~ K&(X) for locally compact G-spaces X.

The original motivation for the work reported here was an attempt to generalize
theorem 1.1.1 to nencommutative C*-algebras. Lacking an adequate notion of free-
ness of a group action on a C*-algebra, we were led to define a concept of K-
theoretic freeness in terms of one of the other conditions of this theorem. Our
choice is condition (6). One reason for choosing this condition is that localization is
an exact functor, so that exact sequences in equivariant K-theory yield exact
sequences for the localized modules K5(4)p. Inparticular, if P is a prime ideal in
R(G), then K§( )p is a generalized homology theory on C*-algebras carrying con-
tinuous actions of the compact group G.

Theorem 1.1.1 fails for general locally compact G-spaces. Indeed, if X is a con-
tractible space, such as [0,1), and the action of G on X is trivial, then conditions (2)
through (B8) are satisfied, since the K-groups which appear are all zero, but condi-
tion (1) fails. The situation can be saved by observing that a continuous action of a
compact group G on a topological space X is free if and only if the restriction of the
action to every G-invariant compact subset of X is free. Since compact subsets of
Hausdorff spaces are closed, and since the C* equivalent of a closed subset is the
quotient by an ideal, we are led to the following definition: a continuous action of a
compact Lie group G on a C*-algebra 4 is called K-free if for every G-invariant ideal
Iin A and every prime ideal P in R(G) not containing I1(G), we have K$(4/1)p=0.
This work, themn, is devoted to the study of actions which are K-free or satisfy cer-
tain closely related conditions.

We have defined K-freeness only for compact Lie groups. We restrict ourselves
to compact groups because equivariant K-theory is only defined for actions of com-
pact groups. (Some work has been done toward a more general definition — see [56]
and [8].) Furthermore, some of our work involves condition (2) of theorem 1.1.1 and
its C* analog. If G is not compact, then X/ &G need not be Hausdorff, and the C*
analog of X/ G, namely the algebra A% of fixed points under the action of ¢ on the
C*-algebra A4, is often so small as to be useless. The restriction that G be a com-
pact Lie group is necessary to ensure that R(G) is a Noetherian ring. (We do not
require that Lie groups be connected. In particular, finite groups are not excluded.)
The fact that R(G) is Noetherian is used in the proof of theorem 1.1.1, and also in



the proof of one of the basic lemmas on K-freeness, proposition 4.1.3. Finally, many
of the most interesting results have actually been proved only for various classes of
finite groups. Such restrictions are presumably not always necessary, but the gen-

eralizations of many of our results to infinite compact groups appear to be substan-
tially more difficult.

We now outline the organization of this work. The remainder of this chapter is
devoted to the proof of theorem 1.1.1 and several related results, assuming the
basic properties of equivariant K-theory. This theorem is not merely motivation —
the proofs of many of our results ultimately depend on it.

In chapter 2 we develop the properties of equivariant K-theory of C*-algebras.
The theorem of Julg ([51]), according to which there is a natural isomorphism
KS(A)~ K, (C*(G,A)), where C*(G,4) is the crossed product C*-algebra, plays a cen-
tral role in our development. Thus, we assume some knowledge of ordinary K-
theory of Banach algebras. (See for example [26], [32], [46], and [105]; note that
the hypothesis in [105] that all algebras are commutative is unnecessary.) We do
not, however, assume any knowledge of equivariant K-theory of spaces. In particu-
lar, the results on equivariant K-theory used in the proof of theorem 1.1.1 are all
proved in chapter 2. Little of this material, if any, is really new.

Chapter 3 is an introduction to the equivariant version of Kasparov’'s KK-theory
[55], using the approach of Cuntz [25]. We use KK-theory in several ways: both as a
useful technical device for proving things about K-theory, and because the analog
of K-freeness using KK-theory is interesting in its own right. Again, the material is
not new, although Cuntz does not deal with the equivariant theory in his account.
This chapter is rather technical; we fill in many of the details omitted from [25].

In chapter 4, we formally define K-freeness and two related concepts, namely
total K-freeness and KK-freeness. An action a of a compact Lie group G on a C*-
algebra A is called totally K-free if the restriction aIH of a to every closed sub-
group H is K-free. We find it necessary to introduce this concept because a simple
example shows that K-freeness, unlike freeness, is not inherited by restrictions of
actions. KK-freeness is the analog of K-freeness using KK-theory. We prove the
basic properties of these concepts, showing, for example, that they behave well with
respect to passage to G-invariant ideals and quotients by them. We also show that
KK-freeness imnplies K-freeness. Perhaps the most significant results of chapter 4
are the following two results, showing that certain actions, which one would expect
to be totally K-free or KK-free, in fact are. We prove that if a is a continuous action
of a finite group G on a separable C*-algebra 4 such that the induced action on the
primitive ideal space of 4 is free, then a is totally K-free. We also prove that if a is
an action of a compact Lie group on a separable unital C*-algebra A such that the
induced action on the maximal ideal space of the center of 4 is free, then a is KK-
free. Unfortunately, this last result fails for nonunital algebras: there is a free
action on a locally compact topological space X such that the corresponding action
on Cy(X) is not KK-free.



The next two chapters are devoted to two particularly difficult topics of the
same general nature as those of chapter 4, namely restrictions of actions to sub-
groups and actions on tensor products. As mentioned before, the restriction of a
K-free action to a closed subgroup need not be K-free. Nevertheless, in chapter 5
we prove that the restriction of a KK-free action of a finite group on a nuclear C*-
algebra to a subgroup is KK-free. The proof requires a technical lemma, the Ideal
Decomposition Lemma, which is used to express an ideal invariant under the action
of a subgroup in terms of ideals invariant under the action of the group. Going in
the other direction, we are able to prove that if a is an action of a finite p-group G
(a group whose order is a power of the prime number p) on a C*-algebra 4, and if
aIS is K-free for every cyclic subgroup S of G, then a is totally K-free. This is the
best generalization we have of the fact that a continuous action of a compact Lie
group on a space is free if the restriction of the action to every finite subgroup of
prime order is free. An example given in chapter 9 shows that “cyclic” cannot be
replaced by “prime order” in our theorem, but I do not know if the other
hypotheses can be weakened.

In chapter 6, we turn to tensor preducts. Here the motivation is the fact that if
X is a free G-space and Y is any G-space, then the diagonal action of G on X x Y is
free. We prove that if G is a finite p-group which acts totally K-freely on a C*-
algebra 4 and arbitrarily on a C*-algebra B, and if one of the actions satisfies cer-
tain technical conditions (including nuclearity of the algebra), then the diagonal
action of G on AQF is totally K-free. The proof uses a Kiinneth theorem, similar to
the one in [95], for the localized homology theories K4 (:)p for certain groups H and
certain prime ideals P in R(#H). The proof also uses the Ideal Decomposition Lemma
from the previous chapter. I do not know if the hypothesis on G can be weakened,
but examples show that total K-freeness cannot be replaced by K-freeness. Indeed,
we produce an example in which the actions on both 4 and B are K-free, but the
diagonal action is not K-free.

Chapter 7 examines the relations between K-freeness and other conditions for
freeness of a group action on a C*-algebra. One of the conditions considered is the
C* analog of condition (2) of theorem 1.1.1. Another type of condition, involving the
Connes spectrum and its variants, has been investigated by Olesen and Pedersen in
[71],[72], and [73], and by Kishimoto in [58], in connection with the problem of
determining when crossed products of C*-algebras by abelian groups are simple or
prime. We obtain theorems along the following lines: if a finite abelian group G acts
K-freely on a C*-algebra A whose K-theory is sufficiently nontrivial in an appropri-
ate sense, then the strong Connes spectrum ([58]) is the full dual group G. We are
then able to conclude that the fixed point algebra 4¢ is strongly Morita equivalent
([87]) to the crossed product C*(G,4). If 4 is separable, it follows that there is a
canonical isomorphism from K +(4¢) to X5(4). We then devote some space to show-
ing that many C*-algebras do indeed have sufficiently nontrivial K-theory. If
G =7/27Z, we can furthermore show that for a K-free action of G on an arbitrary
C*-algebra 4, one has K,(A%)~ K%(4) up to 2-torsion.



The last two chapters examine the implications of K-freeness for two special
classes of C*-algebras. In chapter 8, we study type [ algebras. We obtain a converse
to one of the results of chapter 7:if a is an action of a compact abelian Lie group &
on a separable type | algebra 4, and if the strong Connes spectrum of « is the entire
dual group 5 then the action is K-free. We also obtain a converse to a theorem in
chapter 4:if a compact Lie group G acts totally K-freely on a type I algebra 4, then
the induced action on the primitive ideal space of 4 is actually free. If the group &
is finite cyclic, then K-freeness of an action on a separable type [ algebra actually
implies total K-freeness, and we thus obtain a number of equivalent conditions for
such an action to be K-free.

Finally, in chapler 9 we specialize Lo AF algebras. It is not known whether an
action of a finite group on an AF algebra leaves invariant an increasing sequence of
finite dimensional subalgebras whose union is dense in 4; in order to obtain results
about AF algebras we must assume that all aclions considered do indeed satisfy this
property. (The resulls in chapter 7 apply to AF algebras withoul any such assump-
tion on the actions.) An action a of a finite abelian group G on an AF algebra 4 is
shown to be K-free if K§(4)p =0 for all primes P ¢ R(G) such that P 4 I(G); thus one
does not need to look at the equivariant K-theory of the quotients 4/ /. We further-
more show that if  is K-free, then in fact /(¢)K%(4) = 0, which is a strong version of
condition (5) of theorem 1.1.1. These results simplify considerably the verification
that an action is or is not K-free, and we use them to compute some of our most
interesting examples. In particular, we construct a K-free action of Z2/2Z on a C*-
algebra A which induces the trivial action on the primitive ideal space of 4, an
action of Z/ 27 such that the strong Connes spectrum is the full dual group but
which is not K-free, and an action of Z/ 47 which is not K-free but whose restriction
to the two element subgroup is K-free. We then prove the main theorem on actions
on AF algebras: we show that, for actions of finite abelian groups, KK-freeness, total
K-freemess, and certain homotopy conditions are all equivalent. We are able to gen-
eralize part of this theorem to actions of arbitrary finite groups. The proof of the
generalization uses a general method for computing KK% (4, B), where ( is a finite
group which acts on the AF algebras 4 and # in such a way that the assumption
made above on invariant finite dimensional subalgebras is satisfied. We also exam-

ine the special case of locally representable actions.

It should be mentioned that the later chapters are not dependent on all of the
preceding ones. They all, of course, depend on chapter 4, while chapter 6 also
requires results from chapter 5. Chapler 7 depends only on chapter 4, except that
it uses one lemma, not involving K-theory, from chapter 6. Chapter 8 uses material
from chapter 7 but not from chapters 5 and 8. Chapter 9 depends only on chapters
4 and 5, except for one example which is related to chapter 7.

Some of the results of this work were announced in [81].



1.2. Proof of Theorem 1.1.1

In this section, we prove theorem 1.1.1 and an algebraic lemma, used in its proof,
which will be needed later. We also prove, again for later use, the Localization
Theorem ([98], proposition 4.1), which is a generalization of one of the implications
in theorem 1.1.1.

Before proving theorem 1.1.1, we give a precise definition of the map appearing
in condition () and recall a few facts about localization. If G is a compact group,
and X is a compact G-space, then the map from K°(X/ G) to K2(X) is defined as fol-
lows. Let 7 be the canonical identification map from X to X/ G, and let F be a vector
bundle over X/ G with projection p : E—> X/ G. Then the image of the class [£] of
E in K(X) is the class of the G-vector bundle

mE={zv)eXXE:nm(z)=p ()3,

where the G-actionis g -(z,v)=(gz,v). Itis clear that the resulting map from
KX/ G) to KQ(X) is well defined. It is also easily seen to be a ring homomorphism.
If X is not compact, then there is a canonical homeomorphism X*/ G ~(X/ G)*,
where X* and (X/ G)* are the one point compactifications of X and X/ G. (The
action of G on X* fixes the point at infinity.) It is clear that the image of X%(X/ G)
under the map from K°((X/ G)*) to K2(X*) actually lies in K2(X), so that we have a
homomorphism from K%(X/ G) to K2(X) for arbitrary locally compact G-spaces X.
By taking suspensions, we also obtain a homomorphism from K'(X/ G) to KA(X).

We now recall the definition of localization. (See chapter 3 of [5] for details.) Let
R be a commutative ring with identity, and let S be a multiplicative system in R, that
is, a subset of # which contains 1, does not contain 0, and is closed under multipli-
cation. Then there is a commutative ring S™!'R consisting of all fractions a/s with
a € K ands €S. Two fractionsa/s and & /¢ are equal if and only if thereisu € S
such that w(te —sb)=0. Similarly, if M is an BK-module, then there is an S™!R-
module S™'M consisting of all fractions m /s with m € M and s € S; the condition for
equality of two such fractions is similar. The assignment ¥ —> S™!'¥ is in fact a
functor from R-modules to S™'R-modules, and it can be easily shown ([5], proposi-
tion 3.3) that this functor preserves exactness. Now let P C I be a prime ideal, that
is, an ideal such thatif ab € P thena € Por 6 € P. Then S =R — P is a multiplicative
system. The ring S~1R is called the localization of ® at P, and is written Fp. Simi-
larly, S™'M is called the localization of ¥ at P and written Mp.

We need one lemma before starting the proof of theorem 1.1.1.

1.2.1 Lemma. Let X be a locally compact G-space. Then there is a natural isomor-
phism of R(G)-modules K&(X)~ K2(S? x X), where S! is the unit circle, and the G-

action on S'x X is given by g(z,z) =(z gz).



Proof. We identify S! with the one point compactification of (0,1). We obtain a
natural identification of the suspension (0,1)x X of X with an open subset U of

S'x X. The complement of U is just a copy of X, and furthermore the inclusion of
the complement has a left inverse, namely the projection on the second factor. We

obtain an exact sequence in K-theory

KAMS % X) —> KMX) — KQ(U) —> KQ(S'x X) —> KQ(X) —> KAMU) .

The maps from K% (S?x X) to K5(X) have right inverses, so there is actually a split
exact sequence

0—> KQU) —> KJ(S'x X) —> K{X) —>0.
Since K2(U) is naturally isomorphic to KZ(X), this completes the proof. Q.E.D.

Proof of theorem 1.1.1. (1)=>(2). (This proof is taken from [98], proposition 2.1.) If
G acts freely on X then G acts freely on S'xX. The previous lemma now implies
that we can replace X by S?xX and then only prove that K°(X/ G) —> K2(X) is an
isomorphism. Let £ be a G-vector bundle over X. We claim £/ G is a vector bundle
over X/ G, with the obvious projection map. The only part which is not obvious is
showing that E/ G is locally trivial. For this,letz € X. Then by [14], theorem 11.5.4,
there is a subset Z of X with z € Z such that the map (g.z2) —>gz: GxZ —X
defines a homeomorphism from G X ¢ Z onto a neighborhood U =G -Z of the orbit

Gz . (Here G, is the stabilizer group of the point . The notation Gxg, Z denotes the
twisted product. See the discussion preceding definition 2.9.2 for details.) Since the
action is free, G X Z =G X Z. Since £ is locally trivial, we may assume, by choosing
Z small, that the restricted bundle E}Z is trivial. Let m: X —> X/ G be the
identification map. Since U~ G X Z, we obtain isomorphisms
(E/ G)In[ujm(E] y)/ G~E| 5. Since m[ U] is a neighborhood of nn(z) in X/ G, it fol-
lows that £/ G is locally trivial, and hence a vector bundle.

We now claim that [E] —> [E/ G] defines an inverse for [F] —> [7*(F)]. Let
p:EF—>Xandpy: £/ G—> X/ G be the projections; then recall that

™E/G)=Hzv)eEXXE/G:m(z)=po(v)].

The function from F to m™(£/ G) defined by e —> (p (e ), m(e)) is then obviously an
isomorphism of G-vector bundles. In the other direction, if # is a vector bundle
over X/ G, then the map sending the class [z, v e ™(F)/ G of (z v)em*(F) tov is
clearly an isomorphism. It follows that [F] —> [7*(#)] is an isomorphism from
KO(X/ G) to KQ(X) as desired.

(2)=>(5). (This is from [6], proof of proposition 4.3.) Again, by lemma 1.2.1, we
can replace X by S'x X, and consider only K° and A2. The ring R(G) is noetherian
([97], corollary 3.3), hence /(G) is finitely generated. Since K°(X/ G)~ K2(X), it fol-
lows that K°(X/ G) is also an R(G)-module. (This module structure is not particu-
larly easy to describe.) Since it is also a commutative ring with identity, the ideal
I(G)K®(X/ @) is also finitely generated. Each element in it has the form [E]~[F],



where F and F are vector bundles such that for x € X/ G, the fiber dimensions
dim (£, ) and dim (F,) are equal. (This follows from the fact that elements of I(G)
have the form [V]—[W], where V and W are representation spaces of G with
dimV =dimW.) By [2], proposition 3.1.6, all such elements are nilpotent. Since
I(G)K(X/ @) is finitely generated, there is an integer n such that

(I{G)K®(X/ G))" =0, and since K°(X/ G) is unital it follows that I(G)*K°(X/ G) =0.
Thus I(G)*KQ(X) =0, as desired.

(5)=>(4) =>(3): trivial.

(3)=(1): (This is also from [6], although our argument below that £ (#) is not
complete is different.) Suppose & does not act freely on X. Then thereis z € X and a
subgroup H of G of prime order p such that # ¢ G,. The composite ring homomor-
phism

KE(X) —> KH(X) — Kp({z§) ~ R(H)

makes K (H) into a topological K¥(X)-module, where everything has the /(G)-adic
topology. Now R(H) is finitely generated as a module over K¥(X), since by [97], pro-
position 3.2, it is already finitely generated over R(G) and K¥(X) is a unital R(G)-
algebra. By [5], theorem 10.13, R(H) is complete in the /(G)-adic topology if KX(X)
is. Then R(H) would also be complete in the /(H)-adic topology, since by [97], corol-
lary 3.9, it is the same as the /(G )-adic topology. We will show that this is not the
case.

We have R(G)~Z[z]/ <1 —xP > (the quotient of the polynomial ring in one vari-
able over Z by the ideal generated by 1 —zP ), and /(H)=<1—z >. Clearly
M I(H)™ = {04, whence R(H) is Hausdorff. It is also metrizable. (Setd(nA)=2""
n

where n is the largest integer such that n —A€ I(H)™.) One has (1 —z)™ # 0 for any
n, but (1 —z)* —> 0 as n —> », so that the open set R(H) — {0} is dense; therefore
all sets R(H) —{n} for ne R(H) are dense and open. We have
= N R(H)-{n}.
neR(H)

Since K(H) is countable, we have shown that the empty set is a countable intersec-
tion of dense open subsets. By the Baire Category Theorem, R(H) is therefore not
complete. So K¥(X) cannot be complete.

(8)<=(6). R(G)is a noetherian ring, I(&) is a prime ideal in it, and K#(X) is a
unital algebra over R(G), since X is compact. The equivalence of condition (5) and
(8) then follows immediately from the the following lemma, which for later use is

stated in greater generality than needed here.

1.2.2 Lemma. Let ¥ be a Noetherian ring, let / be a prime ideal in £, and let ¥ be an

K-module. Then the following are equivalent:

(1) Mp=0 for all prime ideals Pc K such that P2 [.



(2) For every n € M there is n € Zsuch that I* -n=0.
If M is either finitely generated or a unital algebra (not necessarily commutative)
over K, then these are equivalent to:

(3) There is n € Z such that /* - M =0.

Proof. (1)=(R):Letne M. Let J={rel:rn=03and let

rad(J)=fa € R:a™ € J for some n}

be the radical of /. By [5], proposition 1.14, rad (/) is the intersection of all prime
ideals of R which contain J.

Let P be a prime ideal of # which does not contain /. Then by hypothesis, the
image of 77 in Mp is zero, so thereisr £ P such thatrn=0. Let s be any element of /
notin P. Thenrsn =0 and rs €/, thatis, rs €/J. Also rs £ P because P is a prime
ideal. So /£ P. Thus, any prime ideal containing J also contains /, and hence
rad(J)> /. Since /[ and / is prime, we actually have rad (/) =/. Since R is noeth-
erian, proposition 7.14 of [5] implies that there is n such that /* ¢ J, whence
m"-n=0.

(2)=>(1). Let P R be a prime ideal with P2/, and letr € I, 7 ¢ P. For every
7n €M, there is n such that /-7 =0, and in particular »®7n =0. Since P is prime,
7™ g P for any n, and therefore the image of n in Mp is zero. Since this is true for
all n, we obtain Mp=0.

(3)=>(R) is obvious for any M.

(2)=>(3) for finitely generated modules: Let n,,...,m; generate M, and find n;
such that /-7, =0. Then clearly /*# =0 with n = mlax(ni)

(2)=(83) for unital algebras: Choose n such that I -1 =0, where 1 is the unit of
M. Then foreveryneM, " - n=7I"-1-n=0,sothat "M =0.

This completes the proof of the lemma, and thus also of the theorem. Q.E.D.

1.2.3 Corollary (of theorem 1.1.1). Let G be a compact Lie group, and let X be a
locally compact free G-space. Then the map K*(X/ G) —> K¥(X) is an isomorphism.

Proof. Let (X, )qe; be an increasing family, indexed by a directed set /, of open G-

invariant subsets of X with compact closures )?a, such that X = | J X;. Then the
ae]

boundaries dX, are also compact G-invariant subsets, and there is a commutative
diagram with exact rows:
KX,/ G) —> K" (8X,/ G) —> K'(Xy/ G) —> K(X/ G) —> K (8X,/ G)
4 + { 4 4
KH(X) —> KX, —> KXy —> K(X) —> K(0Xy).

Since A7a and 8X, are compact free G-spaces, the implication (1)=>(2) of theorem
1.1.1 implies that all the vertical arrows except the middle one are isomorphisms.
By the Five Lemma, the middle vertical arrow is also an isomorphism. Now



