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First Integrals for Singular Holomorphic
Foliations With Leaves of Bounded Volume

J. C. Alexander* and Alberto Verjovskyt
Department of Mathematics and Departamento de Matematicas
Institute for Physical Science and Technology Centro de Investigacion del IPN
University of Maryland Apartado Postal 14-740
College Park, MD 20742 USA México 14, D. F.; México

We consider the germ of k-dimensional holomorphic foliation in €™ with

an tsolated singularity at the origin. Under the assumption that the germs
of the leaves have bounded k-volume, it 1s proved that all leaves are closed
and that at least one separatriz ezists. If the k-volume (or k-dimensional
Hausdor[ff measure) of the separatriz set is also finite, the germ has a very
regular structure. In particular, the leaf space 1s a complezx analytic space.
The problem 1s motivated by the study of singularities of complez differential

equations. Illustrative ezamples and a partial converse are presented.

1. Introduction

The subjects of complex dynamics, and more generally, of holomorphic foliations, have characters
different from their real counterparts, due to the rich structure of complex analysis. Many of the
results of complex analytic geometry have important implications for holomorphic foliations. In this
report we consider one such implication. Bishop [1] has shown that a bound on the volumes and
Hausdorff measure of analytic sets has geometric consequences. We study the consequences for the
structure of a holomorphic foliation in the neighborhood of an isolated singularity. The foliation has
a very regular structure. It contains separatrices. Leaves which are not separatrices are closed. The
leaf space has a complex analytic structure, so that the foliation has the maximal number of first
integrals. In this report we develop such consequences of a bound on the volume of leaves.

A nonsingular foliation of a manifold is a decomposition of the manifold into disjoint immersed
submanifolds, called leaves. Foliations with singularities correspond to integrable systems of forms.
It is convenient to begin with the following [22, def. 3.1, ch. III, pp. 106-107]. Let 2 C €™ be an
open subset and let 0 < k < n. An (n — k)-dimensional holomorphic Frobenius structure F on 1 is a
collection of n — k holomorphic one-forms F' = {w,...,wp—x} on (I such that foreachi = 1,...,n—k,
the integrability condition

dw; Awy A+ ANwp g =0

* Partially supported by the National Science Foundation. Iste autor agradace al Centro de
Investigacién del IPN y CONACYT (México) cuyo apoyo durante la visita al Centro hizo posible el

presente trabajo. .
1 Present address: International Centre for Theoretical Physics, Strada Costiera 11, Miramare,

34100 Trieste, Italy



is satisfied. For each z € (1, let

n—k
K, = ﬂ ker wi(z),

i=1

a subspace of the tangent space at z. The stngular locus of F is the set
S(F) = {z € Q:dimgp(K,) > k}.

This is an analytic subset of 1. The Frobenius system F is regular if dimg(S(F)) < k. On the
complement of S(F) in (1, the forms w; € F are linearly independent and thus determine a nonsingular
k-dimensional foliation 7 (F) of 1 — S(F).

More generally, a holomorphic foliation of codimension q with singularities in the complex mani-
fold M is a nonsingular foliation of codimension g in M — A, where A is an analytic set of codimension
bigger than 1. If A has codimension bigger than ¢, we say the foliation is regular. The forms that
define the foliation in A may be taken to be those local 1-forms which are tangent to the foliation in
M - A

In particular, a foliation of codimension n — 1 in a manifold of dimension n may be given by the

solutions of an ordinary complex differential equation

:—; = f(z), TecC. (1.1)
The orbits of (1.1) are the leaves and the stationary points constitute the singular set. However note
that if n > 2, the resulting foliation is not in general an (n — 1)-dimensional holomorphic Frobenius
structure.

A (holomorphic) first integral of a foliation defined on Q is a (nontrivial) holomorphic function
p: Q) — € which is constant on leaves. There are a number of adjectives (‘strong’, ‘weak’, ‘formal’)
that can be put in front of the term, depending on the particular context, and a number of results
concerning the existence and number of such integrals can be found in (7,13, 16, 17, 18, 20, 21, 27, 28].
In the context of Frobenius structures, first integrals are related to the integrability problem [22]. A
first integral is a function defined on the leaf space of the foliation, that is a map to a one-dimensional
variety. If a foliation admits r first integrals, they form a map from the leaf space to an 7 dimensional
variety. If the map does not factor through an (r — 1)-dimensional variety, the first integrals are
independent. In this paper, we introduce a condition of a differential-geometric nature, essentially
that the k-volumes of the leaves of a k-dimensional foliation are bounded, and under this condition,
prove the existence of the maximal number (n — k) of independent first integrals. Indeed we determine
the structure of the leaf space of the germ of the foliation. Our results are somewhat analogous to
those of Epstein [9] and Edwards-Millett-Sullivan [8].

We recall some terminology and results. A leaf of a non-singular foliation is (locally) an analytic
variety if and only if it is (locally) closed [13]. A variety V may be the union of a finite number of
irreducible components. The dimension of V is the maximum of the dimensions of its components.
It is purely k-dimensional if all of its components are exactly k-dimensional. For k-dimensional V, let
Volzx(V) denote the Euclidean 2k-dimensional volume of V as a (possibly singular) submanifold of
€. Given any subset S of (1, let £(S) = Lq(S), called the saturation of S in 2, be the union of the
leaves which intersect S. A subset of Q is saturated if it is it own saturation. If F' is a holomorphic
foliation defined on 1 C €™, nonsingular in 2 — A, a separatriz of F is an analytic set W C  such
that ANW # 0 and W — A is a leaf of 7(F). Let £(F) denote the union of all separatrices; £(F) is
called the separatriz set of F. An orbifold (or V-manifold) is the quotient of a finite group action on



a complex manifold [6, 14,24]. An orbifold is a normal space [6]. We also use Hausdorff measure for
subsets of €™ and the Hausdorff metric on the set of closed subsets of €™, see e.g. [23]. We collect

our results in an omnibus theorem.

Theorem. Let ¥ be a holomorphic foliation of codimension n — k defined on a neighborhood U of
the origin in €™, 0 < k < n, nonsingular in U — {0}. Suppose there exists a positive constant K such
that for any leaf L of 7,

Volok (L) < K. (1.2)

Then every leaf is closed in U — {0} and is thus a k-dimensional variety. Those leaves which are
not closed in U are precisely the separatrices. There exists at least one separatrix. Let ¥ = Z(¥)
denote the union of the separatrices. If the 2k-dimensional Hausdorff measure Y3 (X) is finite, then
there exists a subneighborhood V of the origin such that in V:

1. ¥ is a purely k-dimensional subvariety of V and in particular has a finite number of irreducible
components;
2. if F; is a sequence of closed leaves converging to any subset of ¥, it converges to all of .
3. there are an (n — k)-dimensional singular space S, a point p € S, and a holomorphic map
m:V — S such that 7~ !(p) = £ and 7 !(q) is a leaf of the foliation distinct from ¥, for ¢ # p in S.

Thus we have n — k first integrals in the map m. The proof occupies section 4.

The question of the existence of separatrices is very old. It was proposed by Briot-Bouquet |3
in 1856 for the case of holomorphic differential equations in €? with an isolated singularity at the
origin. The existence of a separatrix in this case was settled affirmatively in [5].

A partial converse of the theorem is valid. If there exists a map m: U — V, by Fubini’s theorem
the integral of the k volumes of the leaves (= fibers) is integrable over V. Several questions can
be raised. Is the main theorem valid if the k-volumes are only integrable in some sense instead of
uniformly bounded? Or does the existence of 7 ensure that the k-volumes are uniformly bounded? In
particular, if all the leaves that are not separatrices are closed, are the volumes uniformly bounded?
Also suppose ¥ = {wi,...,wk} is a regular holomorphic Frobenius system near the origin in €,

0 < k < n, and suppose that in some neighborhood of the origin,

/ulog llwi(z) Awg(2) A~ Awg(2)]] dz < oo.

Does F have k independent holomorphic first integrals? The volume of the leaves is related to the
integral.

The theorem implies that the foliation is transversally Riemannian off of the origin [22].

The authors would like to thank Xavier Gémez-Mont for helpful discussions and a careful reading

of the paper.

2. Examples

We consider several examples, all differential equations, which illustrate some aspects of the theorem.

These are derived from [4, 10]. Consider the complex differential system

d
22 — Az, zeC@", A€GL(n,C). (1.3)
dT

For simplicity, suppose A is diagonal, with entries Ay,...,A,. The solution (leaf) through a point

(21y---,2n) s given by
é(z1y.0 oy 20, T) = (e*‘T,...,e’\"T). (1.4)



1. If all the A; are equal, the leaves are all the punctured complex lines. Each leaf is a separatrix.
Any continuous function constant on the leaves must be constant; there are no first integrals.
Although the volumes of the leaves are bounded, the 2-dimensional Hausdorff measure of the
separatrix set ¥ is infinite.

2. Suppose A is hyperbolic and in the Poincaré domain (i.e., the convex hull of the eigenvalues of
A does not contain the origin and the eigenvalues are independent over the reals). In this case,
there is a nonzero Ag such that arg(A — ¢/Ag) < m/2 forall 7 = 1,...,n. For eachi =1,...,n,
let Ty = —Xg/NA; for N = 1,...,00; we see that every nonsingular leaf contains at least one
eigenspace in its closure. The separatrices are the eigenspaces. The closures of the other orbits
are not analytic. It can be verified explicitly that the volumes of the leaves are not uniformly
bounded near the origin.

3. Let n = 3 and suppose the convex hull of the eigenvalues contains the origin in its interior. The
solution through a point (zy, 22, 23) with all z; # 0 is closed in €™. For suppose a > 0 and let
P(a) = {(zl,zz,zg) Dz < a1 = 1,2,3} be a polydisk, then {T' € € : ¢(z1,22,23,T) € P(a)}
is a compact convex subset of €. There are leaves ¢(z1, 22, 23,T) with some of the z; = 0 which
contain eigenspaces in their closures. The leaves are generically closed, but the volumes are not
uniformly bounded.

4. Suppose n = 2. Consider the hyperbolic resonant case with A; /A, = —p/q for real positive
integers p, ¢. Then the flow has the first integral f: €% — @ given by f(z21,2) = 2]zh. Ttis
easy to verify directly from the uniformization of the leaves given by the flow that the leaves
have uniformly bounded volume. Note however that a transversal to the separatrix {z; = 0}
intersects each closed leaf p times, whereas a transversal to the separatrix {z; = 0} intersects
each closed leaf ¢ times. The group I' is cyclic of order ¢ or p, depending on the separatrix. In
this case, because the group is cyclic, the orbifold V is not singular, although the projection =
is. It would be interesting to have an example with non-cyclic group.

5. Consider the elliptic resonant case for n = 2 with A\; /A, = +p/q for real positive integers p, ¢
(this case is related to example 1). Then there is a first integral on the complement of the origin,
to wit (21, 22) — 272, *. However this integral does not extend across the origin. In this case all
leaves are separatrices.

From these examples it is evident that having leaves with uniformly bounded volume is a highly non-
generic situation. However having first integrals is also non-generic. We mention for example, the
result of Mattei-Moussou [18] (which subsumes part of ours in the case of codimension one). Their
result states that a codimension-one foliation admits a first integral if and only if the leaves are closed
in U — {0} and if the set of leaves containing O in their closures in countable. There may be some
kind of ‘sliced’ or ‘fibered’ version of our theorem: if there is some kind of r-codimensional ‘slice’ of
C" such that the leaves have finite (k — r)-volume, then are there n — k — r first integrals? Making

sense of the words is part of the question.

3. Bishop’s results

We will need some results of Bishop relating k-volumes of subsets and analyticity. For details see
[1,25]. For convenience we collect them here. A sequence of subsets (in particular varieties) {V;}, ¢ =
1,2,...1in 2 hasa (set) limit V, if for each compact C C (1, the Hausdorff metric d(V;NC,VoNC) — 0

as 1 — 0o.

Bishop 1. Let {V;} be a sequence of purely k-dimensional varieties in an open subset 1 C €™ with



uniformly bounded 2k-volumes; that is Vol,x (Vi) < K for all i. Suppose lim;V; = V,,. Then V,, is
also a purely k-dimensional variety in Q1 and Volsk (Vo) < K.

Bishop 2. Let V) be a subvariety of an open set 1 C €. IfV is a purely k-dimensional subvariety
of @ —Vy such that V NV, has zero 2k-dimensional Hausdorff measure (V denotes closure in Q), then

V is a k-dimensional variety in (.

Bishop 3. Let V; be a subvariety of an open set Q C ™. If V is a purely k-dimensional subvariety
of 1 — V with Vol (V) < oo, then V is a purely k-dimensional variety in (Q.

4. The proof
In this section we assume that 7 is a regular foliation of codimension n — k defined in a neighborhood
U of 0 in €™. Moreover we assume that (1.2) holds. For the first proposition, we do not need to

assume that O is an isolated singularity. Let S(¥) be the singularity set in U.

Proposition. Under the above hypotheses, every leaf is closed in U — S(¥) and hence is an analytic
subvariety of U — S(7). For any z € S(F), there is at least one separatrix containing z in its closure.
The separatrices are precisely the leaves L C U — S(F) such that the closure L of L in U intersect

5(7).

Proof. Suppose there is a leaf L in U — S(F) which is not closed. Then there is a sequence {z;} C L
which converges to 2 ¢ L. Let W be a foliated chart of z in U — S(F). That is, W is holomorphically
equivalent, say by f to a product Wl" X w;ik, where W is open in €7 and the leaves of 7|y are
fY(WE x {22}), called plagues. The k-volumes of subsets of W with the metric of €™ and with
the metric of Wlk X W;ik C €F x €™ * are not the same. However because f is Lipschitz, each is
bounded by some constant multiple of the other. In particular, the volumes of a sequence of sets is
unbounded in one metric if and only if it is unbounded in the other. The set L M W consists of an
infinite number of plaques converging to the plaque containing 2. Hence the 2k-volume of LN W is
infinite, contradicting the assumption (1.2). Thus every leaf is closed in U — S(¥). By the regularity
of 7, the Hausdorff measure ¥2x(S(F)) = 0. Thus by Bishop 2, the closure L of L in U is a purely
k-dimensional analytic subvariety of U, so if LN S(F) # 0, then L is a separatrix.

Let z € S(¥). We show there is a separatrix containing z in its closure. Let {z;} be a sequence
in U — S(¥) which converges to z. Let L(z;) denote the leaf through z;. Let U = UC;, C; C Cj; 4y be
a description of U as an increasing sequence of compact sets containing all the z;. Then for each j,
L(z)N Cj is a sequence of compact subsets of C;. The set of closed subsets of a compact set endowed
with the Hausdorff metric is compact (Blaschke’s selection lemma [2], see [15,§42.11,23]). Hence
there is a convergent subsequence of L(z;) N C;. By Cantor’s diagonal process, there is a convergent
subsequence of L(z;). Let W (z) denote the limit. By Bishop 1, W (z) is a purely k-dimensional variety
containing z. Hence W (z) — S(¥F) must be a finite union of leaves of U — S(7). At least one of them
has to contain z in its closure. The result is proved.

Now suppose in addition that S(¥) = {0} and that ¥5x(2(F)) < oo, where I is the separatrix
set. By Bishop 3, £(¥) is a purely k-dimensional variety and hence is the finite union of irreducible
components ¥; U---U ¥,. Each ¥; is an irreducible variety which is possibly singular only at the
origin.

We recall the cone theorem of Milnor [19, thm. 2.10], which is also valid for analytic varieties [11]:
Let = C €™ be an l-dimensional variety which is singular (possibly) only at the origin. Then there
exists € > 0 such that every sphere S2""! = {2 € €™ : |2| = n} with n < ¢ intersects ¥ transversally



in a real nonsingular analytic variety Lk, (L), called the link of £!. Furthermore, if D?" denotes the
closed disk of radius €, the pair (D2", £/ N D?") is homeomorphic to the pair (D?", Cone Lk (X)).
Actually more is proved. The homeomorphism is a real analytic equivalence on D?™ — {0}, so that
for any 0 < 77 < ¢, the intersection of &' with the set S,f”; ={z€ C" :n < |z| < €} is real analytically
the product Lk.(X) x [n, €.

Let € be so small that D?™ C U and so that the conclusions of the cone theorem are valid for
this € for all the components X; of the separatrix, + = 1,...,7. Let M; = Lk (Z;). Consider F|g2n-1.
It defines a foliation of S?™~! which is possibly singular. The leaves are the components o;‘ the
intersections of the leaves of ¥ with SZ"~1. To distinguish them from the leaves in U, we denote the
leaf in S2"~! containing z € S?"~! by L.(z). By transversality, the foliation of S2"~! is nonsingular
in a closed tubular neighborhood T, (M;) of radius é; of each M;, + = 1,...,r. In Ts,(M;), each leaf

is an irreducible real analytic variety and they are closed.

Lemma 1. For each ¢ = 1,...,r, there exists 6; > 0 and ¢; > 0 such that Volyx_,(L.) < ¢; for all
leaves L. which intersect Ts, (M;).

Proof. Let z; € Ts, (M;), 7 = 1,2,... be a sequence converging to z € M; such that Volyx_1(L(z;)) —
oo. We claim eventually all the L.(z;) C T, (M;). If not, choose a subsequence such that L.(z;) M
9T, (M;) # 0 for all 5. By Blaschke’s selection lemma, there is a further subsequence which converges
in the Hausdorff-metric topology, say to M C S2™~!. Cover the compact Ty, (M;) with a finite number
of foliated charts in €™. Denote the union of these by Y and let Ly (z;) = Ly ({z;}) be the leafin ¥
containing z;. There is a further subsequence such that the Ly (z;) converge in Y. By Bishop 1, the
limit of the Ly (z;) is a purely k-dimensional complex analytic variety which is thus a finite union of
leaves in Y. By transversality M N T, (M;) is a finite union of closed nonsingular leaves in Ts, (M;).
On the other hand, M is a connected subset which contains both z € M; and some point of 8T, (M;)
(in a compact space, the limit of closed connected subsets is connected). However the previous
two sentences state incompatible facts. Thus eventually the L (z;) C Ts,(M;). Consider again the
covering of T, (M;) by a finite number of foliated charts. The intersections of these charts with SZ"~!
are foliated charts of T5,(M;). The volumes (respectively 2k-dimensional and (2k — 1)-dimensional) of
the plaques are bounded above and below. Thus since Volyx_; (Lg(zj)) — 00, there exists some chart
that the number of intersections of the L.(z;), 7 = 1,... 00, with the chart is unbounded. Thus the
L(z;) have unbounded 2k-volumes. This contradicts the assumption (1.2). The proof is complete.
This lemma states that the phenomenon of [26] cannot occur in the present context. On the
contrary, the structure of the foliation on S?*"~! is regular. In particular, the results of [8,9] are

valid, and we obtain the following corollary.

Corollary. Each M;, ¢ = 1,...,r, has an arbitrarily small open tubular neighborhood 75,(M;) in
S2n=1 such that 75, (M;) and its closure 75, (M;) are saturated and in 75,(M;) all holonomy groups are
finite.

(The subscript é; is not necessarily a distance, but is only an index for the neighborhood.) In
particular the holonomy group of M; in 75 (M;) is finite. By Cartan’s theorem [6],, we may find
coordinates of a transversal to M; in 75,(M;) such that the holonomy group I'; is a subgroup of
U(n — k), and by a result of Haefliger thesis (see [22]), the foliation in 75, (M;) is obtained locally by
suspending this representation. Note that those leaves corresponding to fixed points of the holonomy
group have nontrivial holonomy, so there is an open dense set of leaves that have trivial holonomy.
The leaf space of the foliation in 75, (M;) is the germ of the complex analytic space (C"_k/I‘,O) =.8;
[6]. Fixing the model in 75,(M;) of the foliation given by the suspension of T';, the fact that the



foliation in U has leaves with finite volume implies, by an argument similar to the one of Lemma 1,
that the number of leaves of 75, (M;) which belong to the same leaf in U is bounded by some number
N.

Given any neighborhood U of the origin, we construct a subneighborhood. Choose € so that the
D?™ C U and so that all the components E; of £ are the cones of their links M; in D?n,

Lemma 2. Suppose {z;}, 7 = 1,2,..., is a sequence of points in D?™ converging to z € T. Let L(z;)
be the leaf containing z; in D™, and let L be the limit of any subsequence of the L(z;). Then L C X.

Proof. If not there is y € L — £. Let y; € L(z;) converge to y. Since each L(z;) is connected,
L is connected (limit of connected closed sets is connected), and contains both y and the origin.
Consider DZ" for € slightly larger than € (close enough to € that D%* C U and the cone structure
for the separatrix ¥’ in D?" still holds). Let L'(z;) and L denote the leaves and the limit (possibly
with respect to a subsequence), respectively, in the interior of D2". By Bishop 1, L' is a purely k-
dimensional variety and L C L'. Thus y is connected to the origin in L'. Thus there is an irreducible
component Ly C L' — £'. Note that 0 ¢ L{,. Thus L intersects £’ somewhere in D%*. However this
is impossible since the foliation is nonsingular off of the origin. The lemma is proved.

For each t = 1,...,r, consider the saturation Lpzn (75 (M;)). A leaf L € Lpan(7s,(M;)) can
intersect S?™ at points not in 75 (M;). By Lemma 2, §; can be made small enough that all L €
Lpzn(75,(M;)) intersect S2™ transversally. Suppose each 6; has been so chosen. Let V be the the
interior of the union of the Lpzn(75,(M;)), ¢ = 1,...,r. Relabel ENV to L.

Lemma 3. V is a connected neighborhood of ¥.

Proof. Lemma 2 implies V is a neighborhood (consider a sequence {z;} converging to the origin).
Consider the connected component of V containing the origin. This component contains all of .
By transversality, the closure of the component contains all of ¥, hence each 75, (M;), hence each

Lpzn(75,(M,)). By transversality again, the component contains all of V.

Lemma 4. Suppose 75,(M;) N Lpan(75,(Mi)) # 0 for all sufficiently small 75,(M;). Then 75,(M;) N
Lp2n(7s5,(M;)) contains 2 neighborhood of M;.

Proof. Consider the relation R C 7s,(M;) x 75,(M;). Namely (p,q) € R if either p and ¢ are
on the same leaf in D?" or if p € M; and ¢ € M,. We claim this is a closed relation. For suppose
{(pi»gi)}, 1 = 1,2,..., is a sequence of points in R converging to (p,g). We can suppose the sequence
of leaves {L(p:) = L(q:)} converges in D?". If p € M, or ¢ € M;, then (p,q) € R by Lemma 2.
Otherwise, extending to D% and using, as above, connectivity, Bishop 1 and the nonsingularity off
of &, we see that p and ¢ lie on the same leaf and hence (p,q) € R. We have shown that R is closed
and hence compact in 75, (M;) x 75, (M;). By projection to 75 (M;), we see the sets

R; ={p € 75,(M:): (p, q) € R for some ¢} C 75, (M),
R; ={q € T5,(M;): (p,q) € R for some p} C 75, (M;),

are closed. We study the points (p, ¢) € R with ¢ € dR; (where boundaries are with respect to S2").
One possibility for such a (p, q) is that ¢ € 875, (M;). A second possibility is that p € 875, (M;). A
third possibility that is p € 75,(M;) — M; and q € 75,(M;) — M;. We claim the third is in fact not
possible. For suppose there is such a (p,q) on a common leaf L. Then L has a saturated tubular
neighborhood Y with finite holonomy (8,9]. Each leaf in Y intersects both 75 (M;) and 75,(M;). Thus
R; contains a neighborhood of p and R; contains a neighborhood of ¢q. That is, p ¢ dR; and ¢ & OR;

and the claim is proved. Now suppose the lemma is false. Then there exist points ¢ € dR; — M;



arbitrarily close to M;. However, by the claim just proved, the leaf L(g) for any such ¢ must satisfy
L(q) N7, (M;) C O75,(M;). However this contradicts Lemma 2. The result is proved.
Let L£32. (75, (M;:)) denote the intersection of L p2n(75,(M;)) with the interior of D,

Lemma 5. For any ¢ = 1,2,...,7, L$..(75,(M;)) is a connected neighborhood of ¥.

Proof. Note that U_, £$,. (75, (M;)) = V. We claim that if £p2n(7s,(M:)) N0 Lp2n(7s,(M;)) 7
@ and Epgn(r5i(M;)) a ﬁDf"(:’&(Mk)) # 0, then also ﬂD?n(Tb‘j(M]‘)) M EI);IH(T[{,‘(M]C)) # 0. For
Lpan(75,(M;)) N Lpza(75,(M;)) # 0 is equivalent to Lpza(7s, (M:)) N Lpza(75,(M;)) # 0, which
is equivalent to Lpan (75, (M;)) M75,(M;) # 0. By Lemma 4, Lpzn(7s,(M;)) N 75, (M;) contains a
neighborhood of M, as does Lpan(7s, (Mk)) N 75, (M;). Hence Lpan(7s (M:)) N Lpan(7s, (My)) # 0
and thus Lp2n (75, (M;)) N Lpzn (75, (Mk)) # 0, as claimed. Accordingly we may define an equivalence
relation among the indices ¢ = 1,2,...,7; namely, two indices ¢ and j are equivalent if £ p2n (75, (M,))0
Lpan(7s,(M;)) # 0. If there is more than one equivalence class, V is decomposed into the disjoint
union of two open subsets. Since V is connected, this cannot be and there is only one equivalence
class. Thus any ﬂ%gu(ﬂi.(t\[z)) is an open set containing ¥ and the lemma is proved.

At this point we can improve Lemma 2.

Corollary. Suppose {z;}, 7 = 1,2,..., is a sequence of points in V converging to z € ¥. Then any

convergent subsequence of the leaves L(z;) converges to all of I.
Proof. If not, there is more than one equivalence class in the proof of Lemma 5.

Lemma 6. For v = 1,2,..., let z; and w; be points in V on the same leaf. Suppose the sequences

{z:} and {w;} converge to z and w in V respectively, and z & £. Then w and z lie on the same leaf.

Proof. A subsequence of the leaves L(z;) converges to an analytic space L of dimension k by
Bishop 1. Since each L(z;) intersects SZ" transversally, the limit of the L(z;) is L. As a limit of
closed connected subsets, L is connected, and since the foliation is nonsingular off of 0, L is a leaf in
D?". By transversality, L is a leaf in V. However w € L, and the lemma is proved.

Recall that S; is the leaf space of 75, (M;). We introduce an equivalence relation ~ in each S;;
namely, p ~ ¢ if the leaves in 74, (M,) represented by p and g are contained in the same leaf in V. By
Lemma 6, this equivalence relation is closed and Hausdorff. Since it is holomorphic, the orbit space
T; = S;/ ~ has the structure of a complex analytic space [12]. Recall that the germ of the leaf space
S; = (C™%/T,0) as germs of analytic varieties. Thus the germ of T} is a quotient of (€™=*/1,0).
Denote these germs by g(S;) and g(7;). There is a natural analytic map C}J‘:g(Si) — ¢(T;); namely
a class of a leaf L in S; is mapped to the class of L in T;. Lemma 5 implies G.'J,- is defined on the
germ. Moreover G~'_.,‘,- factors to a natural analytic map G;;: ¢(T3) — ¢(T;). Clearly G;j is the inverse
of G;;. Thus all the g(T;) are naturally isomorphic. Finally let g(¥) be the germ of the leaf space of
a neighborhood of £ in V and hence in the interior of D2™, with the added equivalence that all of ¥
is identified to a point. From Lemma 5, we see that ¢(%) is naturally isomorphic to any g¢(7%).

Thus we have detailed the structure of g(X) and also proved our theorem.

5. A final remark

Let D; = D?(n‘k) be a disk transversal to the foliation in 75, (M;), with center 0; = D; N M;. The
projection maps D; — S; are the quotients of the holonomy group.I'; of M, (which is the same
as the holonomy of 3, since X, is a cone over M,). The projection maps D; — S; — T are

surjective finite holomorphic mappings. Thus in the complement of nowhere dense closed analytic



subsets, they are coverings. Assume that they are Galois coverings, and let § be the group of deck
transformations. The elements of § are bounded holomorphic functions on the complement of a
nowhere dense analytic subset, so by Riemann’s extension theorem, they extend to biholomorphisms
of the D;. These extended elements preserve 0,, but only the elements of I'; — § correspond to
the holonomy of M;. For example, in example 2.4, the separatrices ¥; and ¥, are the axes with
I'n = Z/pZ, Ty = Z/qZ, and § = Z/pqZ. Tt would be interesting to know how the foliations in

75, (M:) amalgamate to form the foliation in V.
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