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An HMM/MFNN Hybrid Architecture Based on Stacked
Generalization for Speaker Identification

Weiquan Bao Ke Chen and Huisheng Chi
Center for Information Science, National Laboratory of Machine Perception
Peking University, Beijing 100871, China
Email: wgbaoQusa.net

Abstract

A hybrid architecture based upon Hidden Markov
Models (HMMs) and Multilayer Feed-forward Neural
Network (MFNN) is presented for speaker identifica-
tion. Unlike most of the previous combing methods,
the proposed architecture uses HMMs to model in-
dividual speaker and uses MFNN to deal with the
inter-speaker information for improving performance.
Learning in the proposed architecture consists of two
phases. In particular, only a small amount of data is
needed for training. The HMM/MFNN architecture
has been applied to text-independent speaker identifi-
cation. Simulation has shown that the hybrid architec-
ture yields better identifying rate than that of conven-
tional methods and other hybrid architectures.
Keywords: Speaker identification, Stacked general-
ization, HMM/MFNN hybrid architecture.

1 Introduction

The Hidden Markov Model (HMM) technique has al-
ready been applied to both speech and speaker recog-
nition {1, 2]. However, the HMM has weak discrimina-
tive ability for classification [3]. The Multilayer Feed-
forward Neural Network (MFNN) has been regarded
as a powerful tool for static pattern classification (4]
without temporal sequential processing. A rational se-
lection is hybrid architectures, among them the HMM
and Neural Network hybrids are promising and have
been extensively studied (3, 8]. Basically, these hy-
brid architectures are classified into two categories; i.e.
the MFNN is integrated with the HMM either for pre-
processing or for post-processing. For pre-processing
{4, 9], activation values of output nodes of the MFNN
are used as some kind of posterior probability. This
approach results in no assumption on a specific ob-
servation probability distribution in the HMM and it
~liminates the feature independence assumption. How-

0-7803-4859-1/98 $10.00©1998 IEEE 367

ever, much more training data are usually needed for
parameter estimation since there exists a great num-
ber of adjustable parameters in the MFNN. In another
hybrid architecture [10], the MFNN is used as labeler
for discrete parameter HMMs. For post-processing, an
elaborate representation of outputs of HMMs is sent to
the MFNN as its input. A hybrid architecture has been
proposed for the on-line handwritten character recog-
nition, in which the vector consisting of all final obser-
vation probabilities of a sequence is used as the input
of the MFNN to capture the variance of the sequence
(5]. However, the method cannot be applied to speaker
identification since the representation is unsuitable for
conveying speaker-related information [8].

Unlike most of the previous hybrid approaches, we
propose a hybrid architecture in which the MFNN
is used for post-processing. In speaker identifica-
tion, each HMM is often used to model an individual
speaker’s personality, which results in the lack of use
of inter-speaker information. Empirical studies have
shown that the classification errors of HMMs are rel-
atively stable such that an MFNN can be employed
to “learn” from HMMs for use of inter-speaker infor-
mation based upon the principle of stacked general-
ization [6]. For this purpose, an elaborate represen-
tation of matching scores produced by observation se-
quences with HMMs is presented as the input of the
MFNN. Thus the dimension of the input vector is just
equal to the number of HMMs in the system, which
results in a fast training of the MFNN due to the
lower dimensionality in the input space. Some simu-
lations with 20 population have been conducted on the
KING database for text-independent speaker identifi-
cation. It is evident that the proposed hybrid architec-

ture yields better identifying rate than the conventional
HMM method {8].



2 Stacked Generalization

Stacked generalization is a generic term referring to any
scheme for feeding information from one set of general-
1zers to another before forming the final guess. A gen-
eralizer is a mapping {(z&,yx), 9} = {9}, 1 < & < m,
I, €space R®, yx € R™ and g € R, where (zk,yx) is a
pair of a learning set of m pairs, q is a question and g is
a guess (6]. Full generality would have the guess € RP,
not R. However, for most applications one can replace
a generalizer making guesses in RP with the Cartesian
product of p separate generalizers making guesses in
R. Thus, we can simply take p to equal to 1. The dis-
tinguishing feature of stacked generalization is that the
information fed up the net of generalizers comes from
multiple partitions of the original learning set, all of
which split up the learning set into two subsets. Each
such pair of subsets is then used to collect informa-
tion about the biases of the generalizing behavior of
the original generalizer(s) with respect to the learning
set. Stacked generalization is a means of estimating
and correcting for the biases of the constituent gener-
alizer(s) with respect to the provided learning set.

The first step in employing stacked generalization is
choosing a set of r partitions, each of which splits a
learning set © into two (usually disjoint) sets. Then
label such set of partitions as ©;;, where 1 < i < r and
j € {1,2}. Such set of partitions is called a partition
set. For instance, for a cross-validation partition set
(CVPS) [7], r is equal to m , where m is the total pair
number of learning set. In CVPS, for all i, ©;, consists
of a single element of ©, the corresponding ©;; consists
of the rest of ©, and ©;2 # ©;2 fori # j. For simplicity
in the following discussion, we shall only consider the
CVPS, thus any set ©;, consists of merely one element.

Now define the space of original learning set © as
R™*! or "level 0 space”. When generalizing directly
from © in the level 0 space, any generalizer is called
a " level 0” generalizer, and the original learning set
© is called a "level 0” learning set. For any real-world
learning set ©, there are always ‘N generalizers {G;},
where N > 1 (i.e., we are given a set of N separate
sequences of functions {g;}, 1 < i < o), that one
can use to extrapolate from ©. Here we’ll just dis-
cuss 2 levels stacked generalization. For each of the
r partitions of 8, {0;1,0;2}, look at a set of k num-
bers determined by a p subset of the N{G;} work-
ing together with that partition. Typically these k
numbers can be those like the guesses made by the
{G;} when taught with ©;; and presented as a ques-
tion of the input component of the element 8;,, i.e.,
G;(6i1; the input component of 6;;). Take each such
set of k numbers and view it as the input component
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The full leaming set L

T ® =olomentof L’
?

! The guess of G1

The guess of G2

Figure 1: A simple example of how to use stacked gen-
eralization to combine generalizers(From [6])

of a point in a space R**+! . The corresponding output
value of each such point is calculated from the output
component of the corresponding 6;, . This space R**!
is called the "level 1 space”. Since we have r partitions
of ©, we have r points in the level 1 space. Those r
points are known as the "level 1” learning set. Now the
common idea is to take a question in the level 0 space,
pass it through the transformations which produced
the input components of the level 1 learning set to get
a level'1 question in the level 1 input space, and then
answer that level 1 question by generating from level
1 learning set. This level 1 guess is then transformed
back into a level 0 guess. Any generalizing process of
this form is known as “stacked generalization”. The
process as a whole can be iterated, resulting in levels
p > 1, i.e., multiple stackings. An example of how to
use stacked generalization to combine generalizers is
given as Figure 1 [6].

Here we combine two generalizers, G; and G,. The
learning set L is represented figuratively by the full el-
lipse. A question g lying outside of L is also indicated.
Finally, a partition of L into two portions is also indi-
cated; one portion consists of the single input-output
pair (z,y), and the other portion contains the rest of
L. Given this partition, we train both G; and G; on
the portion {L—(z,y)}. Then we ask both generalizers
the question z; their guesses are g; and g;. Generally,
since the generalizers have not been trained with the
pair (z,y), both gy and g, will differ from y. There-
fore, we have just learned something. When G, guess



g1 and G, guess g3, the correct answer is y. This in-
formation can be cast as input-output information in a
new space, i.e., as a single point with the 2-dimensional
input (g1, g2) and the output (y). Choosing other par-
titions of L gives us other such points. Taken together,
these points constitute a new learning set, L'. We now
train G; and G, on all of L and ask them both the
question ¢. Then we take their pair of guesses, and feed
that pair as a question to a third generalizer which has
been trained on L’. This third generalizer’s guess is our
final guess for what output corresponds to ¢. Assuming
there is a strong correlation between the guesses made
by G, and G on the one hand, and the correct guess
on the other hand, this implementation of stacked gen-
eralization will work well.

According to the principle of stacked generalization,
in the speaker recognition procedure with HMM-based
method, an HMM can be considered as a generalizer
G, and its accumulating matching score can be con-
sidered as the guess g. Now there are ¢ HMMs corre-
sponding to c speakers, therefore G1G2 - - -G, must be
considered for the full learning sets corresponding to
the guesses g193---gc, respectively. The full learning
set L can be subdived into two sets L, and L,. The
subset L, is used to train all HMMs. These HMMs are
called level 0 generalizers and the subset L, is called
level 0 learning set. Question g is that correct speaker
under the output guess distribution {g192 - - - g.}. Since
it is not enough to obtain perfect performance merely
with HMM, an MFNN can be used as another general-
izer to solve the question. All guesses generated by the
HMMs in the level 0 learning set and in L, are used
to train the MFNN. The MFNN is a level 1 generalizer
and its guess (i.e., active output) is the correct guess.
The guesses g1g2---gc of subset L; and L; can also
be claimed priori knowledge that includes both right
and error classification information. Thus, in our hy-
brid architecture, we use the HMMs to generate fixed
dimensional feature vector {g192---g.} from temporal
input sequence in the level 0 space and use the MFNN
to classify these static time-alignment feature vector in
the level 1 space. Apparently, these priori knowledge
will give no benefit to the classifier if the distribution
of knowledge about error is not correlated. On the
contrary, the classifier will achieve powerful adaptive
ability if it can learn from the priori knowledge whose
distribution abides by somewhat correlative law. An
HMM has the capability of accurately modeling sta-
tistical variation in spectral features which also repre-
sent speaker identity. When the HMM is trained in-
sufficiently, the best matching model (i.e., the correct
guess in level 0 space) may be a specific aiternative
model instead of a random one, e.g., the second-best
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Figure 2: HMM/MFNN hybrid architecture

model related to the true model. In the recognition
phase, the input unknown observation sequence is gen-
erated by the second-best HMM with great probability,
and under the similar training condition, the second-
best model keeps relatively stable. When the following
unknown observation sequence generates the same in-
correct score distribution, the MFNN then can rectify
such kind of error.

3 HMM/MFNN Hybrid Archi- -
tecture

The key idea of the proposed method is to use MFNN
to learn from priori knowledge effectively. In the hy-
brid architecture, we train a full-connected MFNN with
Levenberg-Marquardt algorithm for the purpose (7).
HMM/MFNN hybrid architecture is shown as Figure 2.

Given an HMM A =(Ak, Bk, ), k =1,2,---,c and
an unknown observation sequence O = (0,0, - --Or),
with forward-backward algorithm [2], we can obtain a
set of P(O|Ac) = log[P(O|Ak)]. In order to serve for
training MFNN, the logarithmic conditional probabil-
ity is elaborately encoded first. Then the representa-
tion is used as the input of the MFNN. We denote the
encoded feature vector as X = {py,p2,---,pc}, where
Pk, 1 < k < c, is the encoded value of the logarith-
mic conditional probability. Thus the output of MFNN
approaches posterior probability

H c
PilO) = F{3 wi D withpl} (1)
Jj=1 k=1

where w7 is a weight from the jth hidden node to

the :th output node and wf‘;"' is a weight from the kth
input node to the jth hidden node. f(-) is a sigmoid



function. P(w;|O) is the active probability of class w;
with input observation sequence O. Instead of simply
selecting the model producing the maximum value of
P{O|\k), the proposed architecture makes an MFNN
perform the exact classification according to the pri-
ori distribution of all P(O]Ak), 1 < k < c. In this
architecture, the HMM still elaborately represents the
temporal variation while the MFNN yieids a kind of
static pattern of which the inherent temporal informa-
tion has been carried. We select the output node label
whose active value is maximum as the exact class, i.e.

imaz = argmax; P(w;|0), 1<i<ec (2)

During the reestimation procedure of HMM param-
eters, in order to avoid underflow of iteration compu-
tation, a Scaling technique was introduced (2],

T
P(O[M) = log[P(O[M)] ==Y log C'  (3)

t=1

where C; is the scaling factor as
1
Ct= ——— (4)
T )

and generally the denominator of C; is less than 1.
Thus, for a long sequence, the value of P(O|Ak) is very
small. Directly input it to MFNN will give MFNN a
extreme difficulty to adjust its connection weights to

convergence. An encoding rule is introduced to the
hybrid architecture,

Pma: . P(O|’\k)
Pﬂld:
k=1,2---c (5)

Encoding Rule: px =

where Png: = max{P(O|\)}, 1< k < c. This rule
considers the similar degree between every model and
the best matching model as the input of MFNN.

Encoded by the rule, each observation sequence can
finally obtain one vector as the input of MFNN. The
amount of training data of MFNN is reduced extremely
after the HMM processing while the temporal infor-
mation of sequence is still represented accurately by
HMM.

4 Experiments

The experiments were primarily conducted using a sub-
set of the KING speech database which includes 5 wide-
band sessions (labeled session 1 to session 5 as S-1,
S-2, ---, S-5, respectively) per speaker. 1-2 sessions
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are used as training data and the remaining sessions
as testing data. First, silence and unvoiced parts are
removed from the speech priori to feature extraction us-
ing an adaptive energy threshold detector, and then a
sequence of feature vectors is produced with 256 frame-
rate and 16 orders LPC cepstrum analysis {8]. The final
average length of speech of each speaker in a session is
about 15 to 20 seconds. To evaluate different test utter-
ance lengths, the sequence of feature vectors is divided
into overlapping segments of T feature vectors. The
first two segments from a sequence would be,

Segment 1
Ty, EL Egn, o BT BT, ETaL
Segment 2
Ty, TL TL41, I ET41, T 4L

A test segment length of 3.2 seconds would corre-
spond to T = 100 feature vectors for a 32 ms frame
rate. L is the number of shifting frames between two
adjacent segments. Here L is equal to 10, i.e. 320 ms
speech. Each segment of T vectors is treated as a sep-
arate test utterance. The final recognition rate is then
computed as the percentage of correctly identified T
length segments over all test utterances.

The HMM for text-independent speaker identifica-
tion is generally modeled as an ergodic continuous
Gaussian mixture model. In our experiments, an er-
godic Gaussian mixture CHMM with 8 states and 8
mixtures is adopted to provide the input vector for
MFNN. The training phase of the ergodic CHMM is
slightly different with that of left-right CHMM, as fol-
lows: The first is to produce an initial model through a
k-means clustering algorithm by using all training data.
The cluster number is identical to the number of states
of CHMM, i.e. 8. Then the members of each state are
clustered into 8 mixtures. The mean vector and vari-
ance matrix can be computed through these clusters
and all training vectors. The initial transition proba-
bilities are estimated by counting transitions between
states in the training data. Although such an algorithm
is not globally optimal, it is an effective way to generate
an ergodic HMM. The second is the reestimation of the
parameters. Standard Segmental k-mean algorithm is
used for training the initial model until convergence [8].
In order to evaluate the performance according to our
modeling method for different test utterance length, we
carried out some experiments for 1.6s, 3.2s, 4.8s, 6.4s,
8.0s, 9.6s test length. Where S-1 and S-2 are used for
training ergodic CHMM, S-3, S-4 and S-5 for testing.
In the hybrid architecture, The training sets for MFNN
are selected as follows: 30 segments are extracted from
S-1 and S-2 randomly as well as 10 segments from S-
3 and 5 segments from S-4. Thus, total 75 segments
are used for training MFNN. S-5 and the remainder



of S5-3 and S-4 are used for testing the hybrid architec-
ture performance. A comparison of average identifiying
rates of S-4 and S-5 using ergodic CHMM and ergodic
CHMM/MFNN is shown in Table 1.

Table 1: Average identifying accuracies(%) of S-4 and
S-5 for different test utterance lengths with ergodic
CHMM and ergodic CHMM/MFNN

Test length(s) 1.6 32 48 64 80 96

CHMM 74.55 81.98 85.03 85.75 86.83 86.55
CHMM/MFNN 76.64 86.44 90.86 94.29 97.51 94.11

As expected, with increase test utterance length,
identification performance increases. Identification
rate for the shortest test utterance length shows the
greatest improvement. It is also evident that the nec-
essary test utterance length is no less than 5 seconds
in order to achieve a better performance. Further-
more, from the classification results provided by er-
godic CHMMs, we find a general confusion error, i.e.
in this session, some speaker is always recognized as an-
other speaker incorrectly, and in another session, the
same error occurs repeatedly. Such kind of regular pri-
ori knowledge about error classification benefits for a
HMM/MFNN hybrid.

From the experimental results, merely a little better
performance can be yielded for short test utterances,
e.g. 1.6 and 3.2 seconds. By analyzing the confusion
matrix of recognition results to different speakers, we
found that the distribution of priori knowledge about
error classification is very relaxed for short test utter-
ances. It is briefly owing to the fact that short test
utterance is not enough for elaborately representing
speaker identity by CHMM, the matching score gen-
erated by CHMM naturally cannot provide benefit pri-
ori knowledge for MFNN. For 8.0 seconds test utter-
ance length, using our hybrid architecture, we achieved
the best identifying accuracy compared with conven-
tional CHMM method. With these identification me-
thods, it is evident that without enough training data,
HMM/MFNN hybrid architecture method is far supe-
rior to a conventional CHMM method.

5 Conclusions

In this paper, we have presented a hybrid architecture
based upon HMM and MFNN for speaker identifica-
tion. The idea, that is, multiparts of a learning set are
used to train a set of level 0 generalizers to obtain priori
knowledge and such priori knowledge is used to train a
level 1 generalizer to get the correct classification, can
be generalized other classification problems. In partic-
ular, training HMM and MFNN individually reduces
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the computational burdens of the whole identification
system while encoding the output parameters of HMM
does not change the accurate representation to tempo-
ral sequence but speed up training of MFNN. Experi-
mental results show that this hybrid architecture is a
promising architecture and yields better performance
than HMM-based method.
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Abstraci— We present a neural network architecture for
gesture-based interaction between a mobile robot and its
user, thereby spanning a bridge from the localisation of the
user over the recognition of its gestural instruction to the gen-
eration of the appropriate robot behavior. Since this system is
applied under real-world conditions, especially concern-
ing the localisation of a human user, some proper tech-
niques are needed which have an adequate robustness.
Hence, the combination of several components of saliency
towards a multi-cue approach, integrating structure- and
color-based features, is proposed. At the moment, the
gestures itself are very simple and can be described by
the spatial relation between face and hands of the per-
son. The organisation of the appropriate robot behavior
is realised by means of a mixture of neural agents, re-
sponsible for certain aspects of the navigation task. Due
to the complexity of the whole system, above all we use
“standard neural network models”, which are modified
or extended according to the task at hand. Preliminary
results show the reliability of the overall approach as well
as the sufficient functionality of the already realised sub-
modules.

I. INTRODUCTION AND SCENARIO

Fig. 1. The mobile robot MILVA. Provided with the neces-
sary on-board equipment (68040-VME-system, 2 PC-systems,
CNAPS-board, framegrabber) and different sensors (3 cam-
eras, laserscanner, ultrasound and infrared distance mea-
sures, bumpers) MILVA serves as the testbed for the human-
machine-interaction.

Figure 1 shows our robot platform MILVA (Multisen-

sory Intelligent Learning Vehicle in neural Architecture).
A two-camera-system with 7 degrees of freedom (for each

0-7803-4859-1/98 $10.00©1998 [EEE

camera pan, tilt and zoom, additional pan for both cam-
eras) serves for the interaction with a possible user and
actively observes its operational environment. An addi-
tional camera. mounted at the front of the robot, pro-
vides the visual information for navigation.

The use of our system as an intelligent luggage carrier,
for instance at a railway station or an airport, was cho-
sen as a hypothetic scenario for the following reasons:
First, we must take into account the capabilities of our
robot which does not have manipulators and can only
move itself. Second, the scenario is to naturally moti-
vate a gesture-based dialogue between the user and the
serving system. At a railway station with a lot of people
and a high amount of surrounding noise a gesture-based
dialogue seems to be the only possible way for interac-
tion.

Recently there is an increasing interest in video based
interface techniques, allowing more natural interaction
between users and systems than common interface de-
vices do. A considerable number of approaches for
the design of intelligent and adaptive human-machine-
interfaces have been proposed (see for instance (8], [15],
(7).

The superior goals of our research concerning the
proposed architecture (GESTIK-project!) are the high-
est possible robustness of the intelligent visual interface
under highly varying environmental conditions as well
as the sufficient organisation of the appropriate robot

behavior, achieved by continuous interaction between
robot and human user.

II. NEURAL ARCHITECTURE FOR USER LOCALISATION
AND GESTURE RECOGNITION

Figure 2 provides a coarse sketch of the neural archi-
tecture for user localisation and gesture recognition. The
several components of the architecture will be described
in the following subsections.

!Supported by the Thuringian Ministry of Science, Research and
Culture (TMWFK, GESTIK-Project)
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Fig. 2. Building blocks of the neural architecture for user locali-
sation and gesture recognition

A. Multi-cue approach for user localisation

Initially both cameras of the two-camera-system op-
erate in wide-angle-mode in order to cover the great-
est possible area of the environment. Multiresolution
pyramids transform the images into a multiscale rep-
resentation. Four cue modules which are sensitive to
skin color, facial structure, structure of a head-shoulder-
contour and motion, respectively, operate at all levels
of the two pyramids. The utility of the different, paral-
lel processing cue modules is to make the whole system
robust and more or less independent of the presence of
one certain information source in the images. Hence, we
can handle varying environmental circumstances much
easier, which, for instance, make the skin color detec-
tion difficult or almost impossible. Furthermore, high
expense for the development of the cue modules can be
avoided (see [4], [3], [11], too).

a) Skin color

For the generation of a skin color training data set, por-
trait images of different persons (of our lab) were seg-
mented manually. The images were acquired under ap-
propriate lighting conditions (typical for our lab envi-
ronment).

In order to obtain almost constant color sensation,
first we map the RGB color space into a fundamental
color space and employ a color adaptation method (see
[21]). Then, we return into the RGB color space and de-
fine a 2-dimensional Gaussian function via calculation of
the mean and the covariance of that skin color data set
to model the obtained skin color distribution roughly.
Furthermore, if a face region could be verified, a new
Gaussian model is created, more specific for the illumi-
nation and the skin type at hand. Via this model the
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detection of skin colored regions, especially hands, can
be improved. This is very important because the hand
regions cannot be segmented by structural information
(see [13], too).

A more detailed description of our skin color investi-
gations can be found in [5] and [6].

b) Facial structure

In our scenario we assume that a person is an intended
user if its face is oriented towards the robot.

The detection of facial structure uses the gray
value image and employs eigenfaces generated by a
principal component analysis (PCA) of the images
contained in the ORL data set (http://www.cam-
orl.co.uk/facedatabase.html; see [19], too). The image
regions (15 x 15 pixels) used for the PCA were extracted
manually and were normalised by their mean and stan-
dard deviation (see also [24], [23]). Then, the input im-
age is processed with 3 eigenfaces (largest eigenvalues).
Besides the preprocessing steps, the classification of the
obtained fit values remains a difficult problem. The best
results we achieved with a supervised Growing-Neural-
Gas-Network (GNG, [10]), performing a mapping from
the fit values to 2 classes (face, no face). For the train-
ing of the GNG a data set of 174 positive (face) and 174
negative (no face) examples was created. To improve the
generalisation ability of the network, we implemented a
bootstrap algorithm [23] which encloses false classified
image regions into the set of the negative examples au-
tomatically.
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Fig. 3. Detection of frontally aligned faces. The detected faces
are marked in the right image (likelihood higher than 0.7).

The performance of the face detection is demonstrated
in figure 3, where an image taken from (23] was pro-
cessed. False positive detected regions cannot be avoided
entirely (top right), but this region very likely covers no
skin color, and therefore, by combining skin color and
facial structure such mislocalisations can be rejected.

c) Head-shoulder-contour
Similar to the detection of facial structure, the locali-
sation of a head-shoulder-contour operates on the gray



level image of each level of the multiresolution pyramids.
The basic idea is to use an appropriate spatial config-
uration of Gabor filters (filter arrangement, see figure
4) and to classify the obtained filter outputs by a spe-
cially tuned distance measure (Hamming distance) be-
tween the actual filter outputs and a prototype.

Likelihood
ifor Head-Shouider|
‘ Contour

Distance

3590.5/0.5 0 |0.50.5} H
Prototype Pattern i
Fig. 4. Processing scheme for detection of a head-shoulder-
contour.
d) Motion

Qur favoured approach was proposed in [2] and [9].
Based on image differentiation motion is detected in the
first step, leading to a binary motion energy image. The
second step accumulates this motion energy over a cer-
tain period of time resulting in a motion history image.
This approach is reliable especially for the following rea-
son: The detection as well as the accumulation of mo-
tion could be realised via dynamic neural fields, and by
means of different sets of parameters of such fields, dif-
ferent task specific aspects of motion mformatxon can be
obtained.

e) Dynamic neural fields for generation of primary
saliency maps

All cue modules supply input for the primary saliency
maps at each level of the multiresolution pyramid, as
shown in figure 5.

To achieve a good localisation a selection mechanism is
needed to make a definite choice. This is not limited to a
two-dimensional position. Since we use five resolutions
(fine to coarse) we actually can localise persons even
in different distances. Therefore, a neural field (array)
for selection of the most salient region should be three-
dimensional.

Those fields can be described as recurrent nonlinear
dynamic systems (cf. [1], [14]). Regarding to the selec-
tion task we need a dynamic behavior which leads to

lecuon of tha regron

‘E-‘ D most nuly comtaining 2 poienual user
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Fig. 5. Generation of a scale space pyramid of primary saliency
maps

one local region of active neurons successfully compet-
ing against the others, i.e. the formation of one single
blob of active neurons as an equilibrium state of the field.
The following equations describe the system:

d_ . -
ra—tz(r,t) = —z(F,t) — chh(t)

+c / w(F — 7y (7', t)d*7' + c;z(7, t)
R

(1)
with w(F—7') = Zexp (:"’%2’"2)
& &2
"EXP( Iragr I » (2)
L 1
o = oy )
wey = [ uemne @

Herein 7 = (z,y, z)7 denotes the coordinate of a neuron,
z(7, t) is the activation of a neuron 7 at time ¢, y(7,¢) is
the activity of this neuron, z(,t) denotes the external
input, h(t) is the activity of a global inhibitory interneu-
ron, w(7—7") denotes the function of lateral activation of
neuron 7 from the surrounding neighbourhood R. Fur-
ther, 7 is the time constant of the dynamical system
and o is the deviance of the gaussians determining the
function of lateral activation. For the computation we
used the following values for the constants: c; = 0.025.
g = 0.1, ¢ = 0.1, 0 = 2 (halved z-direction), 7 = 10
with AT = 1 (AT: sampling rate). The range R of the
function of lateral activation reachs over 5 pixels and
3 pixels in z-direction, respectively (anisotropic neigh-
bourhood).

The results of the systems shall be qualitatively il-
lustrated in figure 6. The presented results are exem-
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plary, the usage of the shape of contour provides one
solution for the person localisation problem, even under
quite different conditions. In our ongoing work, the same
principle is extended to the whole saliency pyramid, in-
tegrating all cue modules. The novel approach with a
three-dimensional dynamic neural field can be assessed
as robust method for the selection process, very reliable
for the task at hand.

Fig. 6. Input images with marked head-shoulder-contours, ob-
tained at the different levels of the multiresolution pyramid
by the proposed method; left: without dynamic selection;
right: by means of dynamic selection (white rectangles mark
the highest likelihood).

B. Control of the two-camera-system

A camera control module, based on a neural approach
proposed in [22], was extended for the control of the
two-camera system. The basic idea is that a definite
configuration of the cameras is assumed. Therefore, af-
ter a possible user (face region) was located in either
camera image, the second camera is directed towards
this user. This is realised by means of controlling the
pan/tilt of this camera as well as the additional pan for
both cameras. Therefore, the initial camera configura-
tion (especially the base distance) remains stable.

As soon as a possible user (face region) is detected in
one of the camera images, this camera serves as generai-
view-camera, whereas the second camera becomes the
gesture-camera. The necessary distance estimation is
provided by the cue modules detecting structural infor-
mation (face and head-shoulder-contour). The resulting
gesture-scene should contain all gesture-relevant parts of
the intended user. Furthermore, the gesture-camera is
controlled such that the expected face region will appear
on a predefined position in the image with a predefined
scale, too. Hence, we do not have to ensure scale invari-
ance by the further processing steps.

Fig. 7. Possible intuitive gestures (poses); from left to right they
could carry the following meanings for the robot: hello, stop,
move right

C. Detection and interpretation of gestures

a) Definition of a gesture set

For complexity reasons, we have predefined a gesture
alphabet and have assumed only static gestures (poses),
which are stable for a certain period of time (see fig. 7).
The mapping between the gestures to be recognized and
the associated actions of the robot is predefined, too (see
also [15]).

b) Generation of the secondary saliency map

A secondary saliency map is created for the gesture-
scene, which determines the sequential processing of this
scene. Similar to the primary saliency map we utilise to-
pographically organised neural fields.

To simplify the task, we mainly employ the skin color
information as the input for this field, thereby assuming
that the skin color segmentation is robust enough.
Because of the camera control, the prominent position
and size of a hypothetic face region is known. So,
by means of specially tuned field parameters (coupling
width and strength) the emergence of an activity blob
covering the face region is highly supported. Therefore,
the face region will be the first area to be analysed in
detail (see the following section). The hand regions be-
come salient, too.

¢) Face verification and representation of gestures

The next processing step must provide a face verifica-
tion, that means we have to decide if there is a face at
all, and if it is oriented towards the robot.

To obtain this information, a very simple method for
direct mapping of grey value image parts to the cor-
responding object orientation (both, faces and hands),
based on a MLP network, was tested. Preliminary re-
sults show the sufficient functionality of such an ap-
proach under certain constraints (unstructured back-
ground). At present, the approach is examined under
real world conditions. Furthermore, the detailed analy-
sis of faces and hands via a regular grid of Gabor filters
and a following classification of the Gabor filter outputs
with a neural classifier (see also [17], [18]). will be taken
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