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Preface

This textbook on signals and systems is intended~for- use ‘n senior or first-
year graduate electrical engineering courses. It is designed to follow a basic
network theory course and to provide the student with the mathematical tools
needed to analyze a wide variety of systems and the signals processed by them.
It may be used for a one or two semester course since material may be con-
sidered or omitted according to the instructor’s requirements.

Much of the difficulty of such analyses has been greatly reduced by the
application of the digital computer to the solution of the mathematical prob-
lems. However, the digital computer does not eliminate the need for a thorough
understanding of the principles of analysis which are the primary concern of
the book. Nevertheless, the student should feel confident that he will be able to
write a computer program using FORTRAN IV that can implement the
solution of a mathematical problem.

This is not intended to be a handbook of computer programs, hence a
computer program is not given for every analysis encountered. Moreover, since
this is not a study of numerical analysis, not every common type of numerical
analysis is included. Methods for minimizing storage space are discussed and
flow charts of many of the programs are included. Programs written for batch
processing and timeshared operation are also covered because of the rapidly
increasing use of these techniques. Thus we shall at times write programs
which are suitable for these operations.

In Chapter 1 the general concepts of systems, and the signals transmitted
by them are discussed. The basic idea of digital computation is briefly pre-
sented. A direct-current loop-analysis program is written and explained to
illustrate how a FORTRAN 1V program can simplify one of the most tedious
problems that the student has encountered.

In Chapter 2 the Fourier transform is presented using distribution theory.
An elementary discussion’ of distribution theory is covergd, which can be
easily understood by a student who is unfamiliar with the subject. The theory
greatly simplifies the Fourier transform of certain common functions and
ailows generalized functions, such as the unit impulse and its derivatives, to
be treated rigorously but simply. The Fourier transform is derived and its
fundamental properties are discussed, and the Fourier series is treated as a
special case of the Fourier transform. In addition, the fast Fourier transform
and a computer program for implementing it are discussed in great detail.

ix
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The convolution theorem, Gibbs phenomenon, and Shannon’s sampling
theorem are also included.

In Chapter 3 the Laplace transform is derived from the Fourier transform
and the ideas of distribution theory are applied. The 0—, rather than the 0+,
Laplace transform is used and the advantages of this transform in computing
the response to an impulse applied at ¢ = 0 are thoroughly discussed. The
basic theorems and concepts of the Laplace transform used in the solution
of differential equations are considered. The inverse Laplace transform is
developed, but this may be omitted. It is assumed that the reader is familiar
with the basic notions of functions of a complex variable. (Appendix B pre-
sents this material.) The convolution theorem and the two-sided Laplace
transform are also discussed.

In Chapter 4 the basic principles of state space are considered and the
procedures for writing state variable equations are given. Linear, time-invari-
ant, time-varying, and nonlinear systems are discussed and techniques for the
solution of state-variable equations are given. Numerical techniques are also
discussed in detail and FORTRAN IV,  programs, which implement these solu-
tions, are presented. .

In Chapter 5 the analysis techniques of Chapters 2, 3, and 4 are applied
to linear continuous time systems. The relation among transfer functions,
impulse response, and sinusoidal steady-state response is given. The response
to arbitrary signals in terms of unit step and unit impulse response is discussed
and causal sytems are considered. The Hilbert transforms and Bode relations
are derived as a consequence of causal systems. Low pass and band pass
systems are also discussed. In addition, bounds on system response and the
meaning of the effective bandwidth of a signal are considered.

In Chapter 6 discrete time systems are considered. Difference equations
are discussed and state variable procedures are presented. Linear, time-in-
variant, time-varying, and nonlinear systems are considered. The solution of
these equations, including computer implementation, is presented. The use of
the z-transform for the solution of linear, time-invariant systems is discussed.

. In Chapter 7 system stability is covered. Linear, time-invariant systems are
considered first. The Routh-Hurwitz algorithms and Nyquist criterion are de-
rived. Then, general (nonlinear) systems are considered. State variable pro-
cedures are discussed. Liapunov stability is presented in detail. Observability
and controllability are discussed. Stability in sampled systems is also considered.

In Chapter 8 basic ideas-of probability are presented. Random signals and
processes are discussed. A simplified derivation of the central limit theorem
is given. The basic ideas of spectral density are discussed. The effects of band
pass filtering upon noise probability are covered. Correlation functions and
the Weiner-Kinchine relation are discussed. A computer program for the im-
plementation of correlation and the use of correlation to extract signals from
noise are discussed.

In Chapter 9 transmission of information is covered and the basic ideas of
information theofy are used to develop the concepts of channel capacity.
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Some basic ideas of encoding are also discussed. The transmission of signals
over noisy channels and the extraction of the signals from the noise is con-
sidered. Noise-reducing codes are discussed. Next the use of continuous filter-
ing to extract sigfials from noise is presented, and predicting and causal filters
are discussed.

In Chapter 10 distributed systems are presented, and partial differential
equations of distributed systems are derived and solved using Laplace trans-
forms. Thée transient response of special and general transmission lines is dis-
cussed. Sinusoidal, steady-state response and standing waves are then con-
sidered. A discussion of impedance calculations using the Smith chart is pre-
sented. Stub matching is discussed and a computer program to implement this
is obtained. -

There are three appendixes for review or instruction of material which
may be unfamiliar to the reader. Othogonal functions are covered in Appendix
A, basic complex variable theory is discussed in Appendix B, and matrices
are considered in Appendix C, which includes the Cayley-Hamilton theorem.

My loving and heartfelt thanks, and great appreciation, are given to my
wife, Barbara, for typing and correcting the numerous drafts of the manu-
script for this book. The author also wishes to thank his colleagues Professors
A. C. Gilmore, Jr., G. J. Herskowitz, E. Peskin, H. W. Phair, and S. Smith,
and Professors S. C. Gupta and L. Gerhardt for their invaluable suggestions.
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CHAPTER 1

Introduction to Signals and Systems—
The Digital Computer in Signal and
System Analysis

In this book we shall study the analysis of systems ;n;l signals. We shall define a
system as a collection of devices which perform some.specified objective. Systems can
be very simple or extremely complex. A flashlight consisting of a battery, switch,
light, reflector, and case can be considered to be a system. A satellite communications
link, which includes transmitters, receivers, satellite, computers, and antennas, is also
a system. An electric network can also be considered a system. Thus, the complexity
of systems may vary greatly.

Systems of the type that we shall consider respond to certain inputs. These
inputs and the system’s response, or outputs, will be calied signals. In the communica-
tion system discussed, the input signal could be a signal from a microphone and the
output signal the sound from a loud-speaker. A complex system can be assumed to be
made up of components each of which is often treated a3 a system. There are many
definitions of signals and systems. For this reason, mathematical procedures are
usually used in classifying them.

The digital computer is often used in systems analyses to avoid tedious calcula-
tions. Accordingly, we shall often discuss computer programs which can implement
analysis procedures. While certain analysis techniques lend themselves to computer
solutions and others do not, all of these techniques are important since they usually
provide additional insight into the operation of a systcm.

1-1. SOME FUNDAMENTAL ASPECTS OF SYSTEMS

Many systems can be represented by a set of equations which relate the input and
output signals. Often, these will be differential equations. For instance, consider the
system characterized by the “black box” of Fig. 1-1. There are k inputs y, y,. ys. .-,
v, and n outputs xy, X5, X3, ..., x,,.g:'All of these are functions of time. For example,
in an electrical network the y(k) could be voltage generators and the x(k) loop
currents. If the system is linear, a set of differential equations which characterize the
system could be

d™x, (1) dx, (1) .
Ay ———— + =+ ay, —dt- + aygx, () = Fy [y (), 9200,.... 3, (1)]
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d™x,(t) dx, (t)
Aom dm + dyy + llzoxz(t) = Fz[yl(t), ,Vz(t)~ ~~~~yk(t)] (1_1)
d7x, (1) dx, (1)
Anm m + .- Qny + anoxn(t) = Fn[yl(t)’ yZ(t)’ ""yk(t)]
dt dt
Y (t) o ————ox,(t)
Y (t) | —————————0 X, (1)
® L]
° L]
L] L]
Y g (t) O ——————0 X, (1)
Fig. 1-1
A “black box” representation of a system with k inputs and n
. outputs

The q;; are coefficients which may or may not be functions of time.
Let us now consider some terminology:
The order of a system is the Lighest order of the derivative necessary to charac-
terize the system.
The degree of a system is the number of simultaneous equations needed to
characterize the system.

Linear and Nonlinear Systems. Let us discuss a system with k inputs y,(?),
y,(t), ..., ¥ (t) and n outputs x, (1), X, (1), ..., X,(t). Suppose a particular set of inputs
V1a(t), Y2a(0): ... Yia(?) is applied and that the response to them is x,(t), X34(t), -
X,.(t). If another set of inputs y,,(t), Y2, (t), -, Yio(0) is applied, then the response to
them is X, ,(t), X55(t), .., Xup(t). Now suppose that the input signal becomes y,,(t) +
by (t), Y2a(t) + bY2u (), ... Yia(t) + byiy(t), where b is an arbitrary constant; ie.,
each input signal becomeés the sum of the original input plus b times the second one.
The system is a linear one if the output is

X1 (t) = x14(8) + bx1, (1)
X3 (£) = X24(t) + bx3(2) (1-2)

xn(l) = xna(t) + bxnb(t)

Pa—

for all y’s and b’s. One consequence of Eqs. 1-2 is that a linear system is one whose
output, due to a sum of (sets of) inputs, is the sum of the outputs which result when
each (set of) input(s) acts separately. Such a system is said to satisfy the prigciple of
superposition. For instance, in a linear electrical resistance if i, (1) results from the
application of v, (t), and i, (¢) results from the application of vz(?), then i, (t) + i,(t)
will result from the application of v, (t) + v, (?).

Another consequence of Eqs. 1-2 is that if all inputs are multiplied by a constant,
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then all the outputs will be multiplied by the same constant. Such a system is said to
be homogenous. In the case of the linear resistance, if i, (¢) results from the application
of v, (t), then 5i, (t) will result from the application of 5v, (¢). If a system is linear, then
it is characterized by linear simultaneous differential equations.

If a.systeém is not linear, it is said to be nonlinear. A nonlinear system is character-

ized by a set of nonlinear differential equations. That is, there are products of variables,
etc. A resistance whose voltage is given by 5i3(t) is nonlinear. Also transistors are
nonlinear devices.
Time-Invariant and Time-Varying Systems. A time-invariant system is one
whose parameters do not change with time. As an example, consider Fig. 1-2. If the
switch remains open (or closed) for all values of time, then this network is time
invariant. However, if the switch is open for one value of time and then closed for
another (e.g.,openfor 0 =t < 1,closedfor1 <t = 2,openfor2 <t < 5,etc.), then
the network is said to be time varying.

Note that the signals in this case v, (f) and v, (t), will be functions of time even if
the switch remains fixed. However, this does not influence whether or r.ot the system
is time varying or time invariant.

Switch

e

R
s'A'A's = 6?6 ; — 6/_66
1 2 I
+
v, (t)
: c~ |
¥ SSRESE.
Fig. 1-2

A simple system

Continuous Time and Discrete Time Systems. Systems characterized by a set
of differential equations, such as those of Eqgs. 1-1 are called continuous time systems.
That is, the inputs and outputs consist of functions of time which can vary at all times.
The outputs consist of similar functions of time. In general, all systems are of this
type. However, there are systems whose inputs and outputs are satisfactorily
approximated if they are measured (or determined) only at discrete times, i.e., every
second or every 10 seconds, etc. These are called discrete time systems. There are
special techniques which simplify the analysis of these systems. We shall discuss them
in Chapters 6 and 7, where these systems will be represented by difference equations.
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Instantaneous Systems and Dynamic Systems. The response of most system.
depends upon all its past history. Consider the network of Fig. 1-2. The value of
vy(t) at t = t, is a function of v, (t) for all ¢ < t,. This is called a dynamic system.
Now consider an electric network made up only of linear resistors and voltage
generators. At any instant of time t,, the voltage and currents only depend upon the
generator voltage at ¢,; e.g, i(tg) = v(ty)/R. This is called an instantaneous system.
In general, most practical systems are dynamic, and we shall mostly study this type of
system.

There are other elassifications of systems. Fot instance, the network of Fig. 1-2
is made up of lumped elements (resistors, inductors, and capacitors). This can be
called a lumped-parameter system. If the elements of a system are distributed con-
tinuous, as in a transmission line, then we speak of it as a distributed-parameter
system.

1-2. SOME FUNDAMENTAL ASPECTS OF SIGNALS

L

The inputs to a system and its responses to them are called signals. Many of the
signals that we shall consider will be electrical. The input to a high-fidelity amplificr
system can be considered to be the electrical output of a phonograph pickuy.
Similarly, if the system is the suspension of an automobile, the input is all thz
mechanical forces applied to the wheels, while the output is the motion of the car seat.

Signals can be classified in many ways, some of which we shall discuss here.
If a signal f(¢) is such that

f@)=f@+T), forall ¢ (1-3)

where T'is a constant, then f(¢) is said to be periodic. That is, a periodic function
repeatsitselffor each T'seconds. We call T the period of the signal and 1/Tits frequency.
Functions which are not periodic are said to be nonperiodic. We shall consider
nonperiodic functions in much of this book.

Some signals are known or can be predicted for all time. For instance, suppose

the input to a system is "
f{t)=e7", t>0
flo=o0, t<0 (1-4)
=1 t=0

Then f(t) is known for all times, future, and past.

At times we deal with signals whose future values are unknown and cannot be
exactly predicted. For instance, a noise signal which results from the random motion
of charge carriers in a semiconductor is such a signal. Signals of this type are-ealled
random. If f(¢) is known for all future times, then it is said to be nonrandom, deter-
ministic, or predictable. Of course, all real signals are random to some extent. For
instance, we cannot predict for all future time what any real signal will be. However,
it often is convenient to hypothesize mathematically that a predictable signal is
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applied to a system and then to compute its response. This often provides much
information about the general system response.

Sometimes we must work with random signals whose values as functions of
time are not known. However, the total energy contained in the signals can often be
specified-afid probabilistic information is known about the signals. (This is discussed
in Chapters 8 and 9.)

1-3. COMPUTER SOLUTION OF SIGNAL AND SYSTEM
PROBLEMS

The mathematical analysis of system problems is often tedious and time consum-
ing. A digital computer can be utilized to reduce greatly the calculation time and work.
‘Hence, we shall, where practical, discuss computer programs that can be used to
implement the analysis procedures considered in this book. These programs will be
written in FORTRAN 1V. Programs written for batch processing and timeshared
operation are very similar. The only differences are minor differences in the input and
output statements. Because of its rapidly increasing use, we shall at times write
programs which are suitable for timeshared operation.

1-4. COMPUTER SOLUTION OF SIMULTANEOUS
EQUATIONS

In this and the next section we shall discuss the procedure for performing dc loop
analysis using a digital computer. Here we shall consider a program for the solution
of a set of simultaneous equations, and in the.next section we shall discuss computer
procedures for obtaining the simultaneous equations from the network.

The mathematical basis of any computer program must be understéod before
the program is considered. We shall first discuss a mathematical procedure for the
solution of a set of simultaneous equations. The computer program will be considered
subsequently. We shall use the Gauss-Jordan method for the solution of a set of
simultaneous equations. Consider the fellowing equations:

ay Xy + a55%; + o+ AXy = V4

ay1Xy + a5;X; + 0+ AypX, = )2
a,1%, + Ap2X; + 0+ Xy = Va (1_53')
This can be written in matrix form as
i = j (1-5b)

Note that the “hat” indicates a matrix. In some texts boldface letters are used to
indicate a matrix. This is not done here since boldface letters are used to denote
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complex quantities. (A brief discussion of matrices is given in Appendix C.) The g;;
and the y; are knowns and we must determine the x;. Multiply the first equation by
—a,,/a,; and add the result to the second equation. Then repeat this for each
equation in turn; e.g., multiply the first equation by — a5,/a,, and add the result to
the third one. The resulting set of equations becomes

Xy + ay%; + 0+ a3,X, = Yy

Qay204 A1nlny ayy
0 — + -+ lay ——— | Xy =Y, — 1-6
+<an2 x a >x2 ( ni Qi ) Y (a“)yl ( )

Once this has been done we shall have o need for the original values of the g;’s or
the y’s. Let us rename the variables in the following way:

if i=1.

a;; remains a;

a; becomes 0 if j=1, i#L

aidyj .. 4
a;; replaces a; —— if i1, j&1.
A |

y, remains y,.
' aiy

y; replaces y; — (a_“>y‘ j#F L

[

Then Egs. 1-6 become

ap Xy + aXy; + 0+ agX, =y,

0+ ay,%x, + - + ayX, = Y,

(e Xy + 0 F Xy = Yy (1-7)
where new parameters are used. We rename the variables using old variable names
to reduce the number of variables stored during the computer solution.

Now we proceed in the same way but operate on the second to nth equations.
Before doing this, let us introduce some time-saving notation. Instead of writing
the x;’s each time, let us use matrix notation. In addition, we shall include the y’s in
the matrix by adding an (n + 1)th column to the matrix. The array shall be called the
augmented matrix and will be indicated by A". Then

Ajns1 = Vs J= 12050 (1-8)



