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Preface

The study of numerical methods for the solution of partial differential equations
has enjoyed an intense period of activity over the last thirty years from both the
theoretical and practical points of view. Improvements in numerical techniques,
together with the rapid advances in computer technology, have meant that many of
the partial differential equations from engineering and scientific applications which
were previously intractable can now be routinely solved.

This book is primarily concerned with finite difference techniques and these
may be thought of as having evolved in two stages. During the fifties and early
sixties many general algorithms were produced and analysed for the solution of
standard partial differential equations. Since then the emphasis has shifted toward
the construction of methods for particular problems having special features which
defy solution by more general algorithms. This approach often necessitates a greater
awareness of the different physical backgrounds of the problems such as free and
moving boundary problems, shock waves, singular perturbations and many others
particularly in the field of fluid dynamics. The present volume attempts to deal with
both aspects of finite difference development with due regard to non-linear as well
as linear differential equations. Often the solution of the sparse linear algebraic
equations which arise from finite difference approximations forms a major part of
the problem and so substantial coverage is given to both direct and iterative methods
including an introduction to recent work on preconditioned conjugate gradient
algorithms.

Although finite element methods now seem to dominate the scene, especially at
a research level, it is perhaps fair to say that they have not yet made the impact on
hyperbolic and other time-dependent problems that they have achieved with
elliptic equations. We have found it appropriate to include an introduction to finite
element methods but, in the limited space available, have concentrated on their
relationships to finite difference methods.

The book is aimed at final year undergraduate and first year post-graduate
students in mathematics and engineering. No specialized mathematical knowledge is
required beyond what is normally taught in undergraduate courses in calculus and
matrix theory. Although only a rudimentary knowledge of partial differential
equations is assumed, anything beyond this would seriously limit the usefulness of
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the book, the dangers of developing numerical methods in ignorance of the corres-
ponding theory cannot be emphasized too strongly. Theorems and proofs of existence,
uniqueness, stability and convergence are seldom given and the reader is referred
to appropriate research papers and advanced texts.

The sections devoted to applications reflect the strong links with computational
fluid dynamics and it is hoped that practitioners in this field will find this material
useful. It is taken for granted that the reader will have access to a digital computer
since we believe that a proper understanding of the many methods described, along
with their limitations, will be improved greatly by practical experience.

The list of references, which we readily admit cannot do justice to the vast litera-
ture in this field, is intended for the reader who wishes to pursue the subject at
greater depth. We apologize to those many authors who have made important
contributions in this area and whose names have not been mentioned. Most of the
material in this book has been presented in the form of lectures to Honors and M.Sc.
students in the Universities of Dundee and St Andrews. An earlier version of this
text, written by one of the present authors, was published under the title Com-
putational Methods in Partial Differential Equations, John Wiley and Sons, 1969.

In preparing the material for this book the authors have benefited greatly from
discussions with many colleagues and former students. Special thanks are due to
lan Christie, Graeme Fairweather, Roger Fletcher, Sandy Gourlay, Pat Keast, Jack
Lambert, John Morris and Bill Morton. Final thanks are due to Ros Hume for her
swift and accurate typing of the manuscript.

A.R.MITCHELL
D.F. DRIFFITHS
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Chapter 1

Basic Linear Algebra

1.1 Introduction

In the numerical solution of partial differential equations by finite difference
methods, the differential system is replaced by a matrix system where the matrix 4
is usually square with real elements. In the present chapter some useful properties of
the matrix A are outlined, often without proof. For more detailed information
concerning properties of matrices, the reader is referred to books such as Fox (1964)
Wilkinson (1965) and Fadeeva (1959).

The system of linear equations requiring solution is

n
/'21 ayx; = by (1 = 1.2,... ,n), )

which may be written as the matrix system
Ax=Db, 2

where A4 has n rows and columns and the elements a;;(i,j = 1,2, ... ,n) are real
numbers. The vectors x and b have n components.

The usual problem is to find x when A and b are given. A unique solution of
equation (2) which may be written in the form

x=A"b

exists for equation (2), when A is non-singular, which is equivalent to A having a
non-vanishing determinant. Since equation (2) is a matrix representation of a
differential system, the matrix A is usually sparse (many of its elements are Z€10)
and possesses a definite structure (determined by its non-zero elements). The method
of inversion of A4, particularly when the order n of the matrix is large, depends very
much on the structure of 4, and a variety of techniques for inverting 4 will be
presented throughout this book. As n becomes larger, the methods of inversion
must become more efficient.



A review of notation and properties for a square matrix 4 of order n with real
elements, which is relevant to the solution of equation (1), is now given.

1.2 Notation

A

square matrix of order n.

number in the real field, which is the element in the ith row and jth column
of the matrix A.

inverse of A.

transpose of 4.

determinant of 4.

spectral radius of 4.

unit matrix of order n.

null matrix.

column vector with elements x; (i = 1,2, . . ., n).
row vector with elements x; (j = 1,2, ..., n).
complex conjugate of x.

norm of 4.

norm of x.

permutation matrix which has entries of zeros and ones only, with one
non-zero entry in each row and column.

1.3 Definitions

The matrix 4 is

non-singular if [4]|# 0.

symmetricif 4 = AT,

orthogonal if 4! = AT,

null ifa,‘/' =0 (l,] = 1,2, Soa n).

diagonal if a;; = 0 (i #/).

diagonally dominant if |a;| > igi |la;;| for all 7.

tridiagonal if a;; = O for |i —j| > 1.
block diagonal if

A =[B, O

O By

where each By(k =1,2, ... ,s)is a square matrix, not necessarily of the same
order.



upper triangular if a;; = 0,1 >].

lower triangular if a;; = 0,7 > L.

irreducible if there exists no permutation transformation IATT™
which reduces 4 to the form

P 0
R 0
where P and Q are square submatrices of order p and q respectively (p +q =n)

and 0 is a p X ¢ null matrix.
The characteristic equation of 4 is

|A —M|=0. €©))
The eigenvalues of A are the roots NGE=1,2,...,n) of the characteristic
equation.

A right* eigenvector x® for each ; is given by
AxD = 2x® x® #0).
A left eigenvector y®7T for each \; is given by
yOT4 =2yOT (v #0).
Two matrices 4 and B are similar if B =H 1 AH for some non-singular matrix .
H! AH is a similarity transformation of 4.

A and B commute if AB = BA.

Example 1 Find the values of \ for which the set of equations

(1—Nx; + x2 —x3
xp+ (2= Nxp + x3
x1+ x3 + 3-=N) x3

I

0
0
0
has a non-zero solution and find one such solution.

A non-zero solution exists only if

1 — A 1 — 1| =0,
1 2 — N 1
1 1 3 —A
which leads to
A=2,22v2

* The word ‘right’ is often omitted and x(') is usually referred to an an eigenvector corres-
ponding to .
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For A = 2, the equations become

(@) —x;+ x; —x3 =0,
(b) X3 +x3 = 0, (4)
(c) x;+ x5 +x3 = 0.

Only two of the equations of (4) are independent. For example, (b) can be obtained
by halving the difference of (c) and (a). If we ignore (a) it follows from (b) and (c)
that

Xa =0andx1/x3 = — 1.

Thus any eigenvector corresponding to A = 2 is proportional to

&

Example 2 Ifx(i) (i=1,2,...,n)are the eigenvectors of A and y(j) G=1,2,...,n)
are the eigenvectors of A* , show that

xWTyD =0 o+,
where \; (i = 1,2, ..., n)are the eigenvalues of A.
The eigenvalues of 47 are given by
4T =N =0,

since the eigenvalues of AT are the same as those of 4. An eigenvector of 47
corresponding to )\j is y(/), given by

ATyD = ny 0, (5)
or after transposing both sides,
y(i)TA — kij)T.

DT s 5 left eigenvector of 4.)

Also

(y

AxD = 7\,-x(i),
which, on transposing both sides, gives
xDT 4T — Ax DT, )

Postmultiplying equation (6) by y(j) and premultiplying equation (5) by x(i)T, and
subtracting, the result

0=(\— )\j)x(i)Ty(f)

is obtained. This leads to the desired result if N F A



Example 3 Show that the eigenvalues of a matrix are preserved under a similarity
transformation.

If
Ax = X, x#0
then
H' Ax=NH'x (|H|#0),
leading to
HYAHH 'x = \H 'x,
and so

(H'AH)H x = \H 'x.

Thus the eigenvalues are preserved and the eigenvectors are multiplied by A a

Example 4 If the eigenvalues of the matrix A are distinct, show that there is a
similarity transformation which reduces A to diagonal form and has its columns
equal to the eigenvectors of A.

A has eigenvalues Ay, Az, . .., A, and eigenvectors x®, PG x™), AT has
eigenvalues Ay, Ay, . - . , A, and eigenvectors y v oy@ y("), where

y(J')Tx(i) =0 G # )

and

y DT 5 () 1 G=1,2,...,n),

the eigenvectors having been normalized. These relations imply that the matrix yT
which has y NT a5 its jth row is the inverse of the matrix X, which has x a5 its ith
column. Now

AX = X diag (\;),
and since Y7 is the inverse of X, it follows that

x ' ax=vT AX = diag(\),

leading to the desired result.

1.4 Linear vector space

An important role will be played by the n-dimensional vector space R,,. A point
X in this space is arrayed in the form



X = X1 >
X2
Xn
where xy, x,, ..., X, are the n components of the vector, which may be complex,
but which we shall assume to be real. The number # is said to be the dimension of
the space.
Vectors x(‘), x(z), ...,x" are said to be linearly dependent if non-zero constants
C1,Ca, ..., Cp exist such that
x4+ 0,x@ + 4+ o,x" = o,
If this equation holds only for ¢; = ¢, = ... = ¢, =0, however, the vectors x(,
x@ | x(") are said to be linearly independent. A system of linearly independent

vectors is said to constitute a basis for a space, if any vector of the space is a linear
combination of the vectors of the system. The number of vectors forming a basis is
equivalent to the dimension of the space. The 7 linearly independent vectors form a
complete system and are said to span the whole 7 space.

The inner (or scalar) product of two members x and y of the vector space is
defined by

n
xy) = Z xp.
i=1

The length of a vector x is given by

n
x, )" = (_El xt)”
i=

The non-zero vectors x and y are said to be orthogonal if (x, y) = 0. A system of
vectorsis orthogonal if any two vectors of the system are orthogonal to one another.

Theorem The vectors forming an orthogonal system are linearly independent.

Proof: Let x x® ,x™ form an orthogonal system and suppose that
eix®O+0,x@ + 4, xM =0,

Take the scalar product with x¥), and so
ci(x®, x(i)) =0

foranyi=1,2,...,n.Since (x(i), x(i)) # 0, it follows that



=0 (i=1,2,...,n).
Thus the vectors x®, x@ . . ., x( are linearly independent.

1.5 Useful matrix properties

As far as possible these properties are grouped, although there is no particular
merit in the order of presentation chosen. All matrices are square of order 7. We
shall be concerned almost entirely with real matrices, but some of the results in this
section apply when A is complex. This is particularly true of the Jordan canonical
form where one usually requires to work with complex numbers.

Jordan canonical form

A Jordan submatrix of 4 is a matrix of the form

R o

—_2

LO .1 A

where ; is an eigenvalue of A. The Jordan canonical form of A is a block diagonal
matrix composed of Jordan submatrices. It is unique up to permutations of the
blocks. Any matrix A can be reduced to Jordan canonical form by a similarity
transformation

J=H'AH.

The diagonal elements of J are the eigenvalues of 4.

If A has n distinct eigenvalues, its Jordan canonical form is diagonal and its »
associated eigenvectors are linearly independent. They form a complete system of
eigenvectors and span the whole n-dimensional space. If A does not have n distinct
eigenvalues, it may or may not possess 7 independent eigenvectors.

If any two matrices A and B commute and have diagonal canonical forms, then
they have a complete set of simultaneous eigenvectors.

Symmetric matrix
A symmetric matrix has
(i) a diagonal Jordan canonical form;

(i) n real eigenvalues;and
(iii) » mutually orthogonal eigenvectors.



If A and B are symmetric, and AB = BA, then AB is symmetric.

Positive definite matrix

If A is real and x is complex, then 4 is positive definite if
(x, Ax) >0 for all x # 0.

This, of course, implies that (x, Ax) is real. If 4 is positive definite, then it is sym-
n

metric. (Note that the inner product (x, y) of two complex vectors is Z X,
=1

where p; is the complex conjugate of y;)
If A is real and x is real, then A4 is positive real if

(x, Ax) >0 for all x # 0.

This time A is not necessarily symmetric.
A matrix A4 is positive semi-definite if

(x, Ax) >0 for all x,

with equality for at least one x # 0.

A Stieltjes matrix is a real positive definite matrix with all its off-diagonal
elements non-positive. If the properties of irreducibility and diagonal dominance
are added, the matrix is often referred to as an S-matrix. An S-matrix has the
following properties:

(1) a;=a;;
(i) a;<Ofori#j,
(iil)  lal >] Ei |a;j1, with strict inequality for at least one i;
(iv) 8= [ay] is irreducible;
(v)  Sis positive definite; and
(vi) the elements of S™! are positive.

Such matrices occur repeatedly in the finite difference solution of partial differential
equations.

Example 5 Show that, if (x, Ax)> 0 for all complex X, then A is symmetric.

Let x = a + b where a and b are real. Now the inner product (x, y) of two
complex vectors is

n -
Z xii,
i=1

where y; is the complex conjugate of y;. Consequently,



(x, Ax) (a+ib, A(a+ib))
(a, Aa) + i(b, Aa) —i(a, Ab) + (b, Ab)

[(a, Aa) + (b, Ab)] —i[(a, Ab) — (b, Aa)] > 0.

This is only possible if

(a, Ab) — (b, Aa) = (a, Ab) —(a, 4Tb) = (a,(4 — 4T) b) =0,
and so

A=AF,

leading to the desired result.

Example 6 Show that if A is symmetric and positive real, then its eigenvalues are
all positive.

If A is symmetric, its real eigenvalues imply real eigenvectors. Consequently,
(%, Ax) = (%, Ax) = A(x, X)
for any eigenvectot x # 0. But
(x, Ax)>0,
since A is positive real, and so

_ (x, 4x)
)\__—(x,x) >0.

Example 7 Show that AT A has non-negative eigenvalues.
Let
B=4T4.
B is symmetric because
BT = T4 =u4T4 =8,
and so B has real eigenvalues and real eigenvectors. For any real non-zero x,
(x, Bx) = (x, ATAx) = (4%, Ax) >0,
and so B is positive semi-real and, by previous example, has non-negative eigenvalues.

Eigenvalues of a matrix

The eigenvalues of 4 lie within the union of the n discs

n
lz—a,—i|< 21 Ia,-il (i=1,2,...,n)
J=

j#i
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in the complex z plane. Since A7 has the same eigenvalues as 4, this may be replaced
by

n

1z —a;| < El la;l G=1,2,...,n).
=
itj

This is Gerschgorin’s theorem.
The spectral radius of a matrix A is denoted by p(A4) and is given by

p(4) = max 1N,
i

where \(i=1, 2, ...,n)are the eigenvalues of 4. p(4) is the radius of the smallest
circular disc in the complex plane, with the centre as the origin, which contains all
the eigenvalues of A. From Gerschgorin’s theorem,

p(A) <min (max 2 jg;l;max T |a;l).
i j il i

If A is the tridiagonal matrix

. . b
O ca |l
where @, b and c are real and bc > 0, the eigenvalues of A are given in closed form
by

As = a + 2V/(bc) cos ns

Exercise

1. Find the eigenvectors of the matrix
— 2 1 o],
1 -2 1
0 1 -2
and show that they are mutually orthogonal.

1.6 Vector and matrix norms

The modulus of a complex number gives an assessment of its overall size. It will



