Object-Oriented Databases
with Applications to CASE,
Networks, and VLSI CAD




ObJect Oriented Databases‘
with Applications to CASE,
Networks, and VLSI CAD

Editors:

Rajiv Gupta
GE Corporate Research and Development

Ellis Horowitz
University of Southern California

Prentice Hall Series in Daia and Knowledge Base Systems
Dennis McLeod, Series Editor

Prentice Hall, Englewood Cliffs, N} 07632



Library of Congress Cataloging-in-Publication Data

Object-oriented databases with applications to CASE, networks, and
“VLSI CAD / edited by Rajtv Gupta and E1lis Horowitz.
P. -CR. -

Includes bibliographical references and index.

ISBN 0-13-8206833-8 | -

1. Object-oriented data bases. 2. Computer-aided software
engineering. 3. Computer networks. 4. Integrated circuits--Very
large scale integration--Design and.construction--Data processing.
6. Cosputer-aided design. I. Gupta, Rajtv. 1II. Horowitz, Ell1s.
QA78.8.03026 1991 ¢
008.76--dc20 90-38302

Editorial/production supervision and
interior design: Jennifer Wenzel
Manufacturing buyers: Linda Behrens and Patrice Fraccio

= ©1991 by Prentice-Hall, Inc.-
= A Division of Simon & Schuster =

Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

109 87 65 43 21

ISBN 0-13-b29833-8

Prentice-Hall Intemnational (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sidney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S. A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

" Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro



: Preface

Object-oriented has become one of the most important buzzwords in the computer science
arena. This is no accident. To a practitioner in software engineering the term promises a
substantial body of proven concepts such as data abstraction, encapsulation, inheritance,
polymorphism, extensibility, generic programming, information hiding, code reusability,
modularity, exception handling, and so on. The list goes on, if only because there is no
clear consensus on “what” is object-oriented programming.

One stream of research in the object-oriented field is object-oriented databases,
(abbreviated here as OODBs). OODBs, which are a radical departure from conventional
data structuring paradigms, are the primary focus of this book. Since language, database,
and software engineering issues are intricately intertwined, a few chapters in the book are
devoted to object-oriented languages. However, the overall view is distinctly database
oriented. '

Relational database technology has dominated the database field for the past decade,
and more. There are now many commercially available relational systems. Researchers
have long recognized the limitations of relational systems in managing data for appli-
cations such as CAD CAM, office information systems, and CASE. The incorporation
of the object paradigm in database management systems is a direct consequence of this
realization. 3 e

Many joumal articles have been published that deal with numerous aspects of this
new class 6f data management: software. However, “real” object-oriented databases are
just now appearing and several others are about to make their debut. In the absence of
any torch bearers when it comes to actual software, and any book that presents the big.
picture, buzzwords abound and the Tower of Babel syndrome is clearly discernible. It is
our ambition in this book to take some of the “buzz” out of these buzzwords that are so
prevalent in this fast-breaking field and expose the concepts behind them.

ix



The purpose of this book is fourfold.

1. It provides the reader with a perspective on various object-oriented concepts. These

concepts, which have been under development in a diverse set of fields such as ar-
tificial intelligence, database theory, programming languages and compiler theory,
“form the backbone of the object paradigm. Illustration of their power, implemen-
tation, and use is a primary objective of this book. This book presents several
issues of practical importance which are still in research/development stages. Is-
sues such as benchmarking, schema evolution through learning, and incorporating
and promoting the object paradigm in a corporation, are covered.

2. The book provides the reader an oyerview of existing OODBs, including examples
of their use and comparison of their strengths and weaknesses. Besides a survey,
three OODBs are selected for closer scrutiny. We believe that these three databases
adequately represent the three evolutionary tracks taken by OODB research. As
the reader will find out, the core concepts embodied in most OODBs are very
similar. Instead of restating the same concepts over and over, the book presents
three different facets of these databases.

3. The book provides a series of real-world examples and shows how they are mapped
onto an object-oriented framework. The idea is to show the concepts in action. A
diverse set of application areas is chosen so as to exemplify the universal applica-
bility of the object paradigm.

4. C++, even though it is not an OODB, has been a prime mover in this field. Several
yet-to-be-released OODBs have either adopted C++ as their primary data manipu-
lation language, or are implementing object persistence directly into the language.
The book presents a brief overview of the language, its power and limitations. It
then presents two quite different approaches to making a database out of C++.

A number of object-oriented systems are covered in this book. These -include
Vbase (TDL and COP), GeniStone and OPAL, Statice, ONTOS, IRIS, ORION, ODE,
SIM, and C++. We do not expect the reader to be familiar with any of these systems.
The overall coverage, though intentionally detailed at places, is quite self-contained. The
book, however, does assume a degree of maturity about the “software-in-the-large” and
- knowledge of any one high-level language.

Advice to the Reader

The reader of this book will doubtlessly be someone who is a computer professional.
Let us first assume that the’ reader has had no exposure to object-oriented concepts, but
has an interest and knowledge of databases. He is advised to “begin at the beginning”.
Part I introduces the main concepts of object-oriented programming and object-oriented
databases. For a reader just starting out in this field, the lay of the land is important. For
such a reader, of special merit would be the articles by Gupta and Horowitz, McLeod, and
Berre as they assume a beginning reader. In Part II the “Overview” article by Horowitz
and Wan also would be appropriate for this person. Afterwards the reader might either
move into the more in-depth material on Statice, Vbase and GemStone, or move to the
applications of Part III.

X Preface



Alternately, let us assume that our reader is interested in using an OODB for an
application. Readers vho have a specific interest, such as VLSI CAD, CASE or network
management might begin with the surveys in Part I and II and then go to the article
in Part III that deals specifically with their application. Here he can read about several
serious attempts to use OODBs, the successes and the failures. He might then go to Part
IV and examine the latest attempts to add persistence to C++.

Acknowledgments

This book would not have been possible without the wisdom and cooperation of the
contributing authors. Special thanks go to the staff at Ontologic, Inc. for providing
us with software and documentation which is eminently useful. Thanks also go to our
editors at Prentice. Hall. Special thanks to Dan Olson for providing help with PHtex
macros. The University of Southern Califomia has been a stimulating environment for
writing this book.

Rajiv Gupta and Ellis Horowitz

To my wife, Lupe,
and to Samantha—the greatest thing that happened to
us since this book was begun-—with a request.

“Child! do not throw this book about;
Refrain from the unholy pleasure

Of cutting all the pictures out!
Preserve it as your chiefest treasure”

[Hilaire Belloc, Bad Child’s Book of Beasts]

Rajiv Gupta

To Ira Horowitz,
the object of my parental affection.
Ellis Horowitz

‘ Preface = : xi



About the Editors

RAJIV GUPTA is a computer scientist at the General Elec-
tric Corporate Research and Development Center, Sch-
enectady. Prior to his position at GE, he was a Research
Assistant Professor of Electrical Engineering—Systems at

1988 to 1990. Dr. Gupta served as a Post Doctoral Re-
search Fellow in the VLSI Test Group at USC from July
1987 to June 1988, and as a Junior Software Engineer at
Tata Burroughs Ltd, Bombay from March 1982 to July
1982.

Dr. Gupta received his B.E. (Hons.) degree in Elec-
trical and Electronics Engineering and his M.Sc. (Hons.)
degree in Physics from Birla Institute of Technology and
Science, Pilani, India, both in 1982. He received his M.S.
and Ph.D. degrees in Computer Science from the State University of New York at Stony
Brook, where he was a Research Assistant from August 1982 to July 1987.

Dr. Gupta’s primary research interests include object-oriented frameworks for VLSI
CAD, VLSI design and testing, system-level fault diagnosis and reconfiguration, and
fault-tolerant computing. He is currently investigating databases for organizing and
integrating CAD. information. As an experimental testbed for integrating VLSI CAD
tools, he has deslgned and implemented a prototype framework called Chase. Dr. Gupta
has published nunrerous research articles on subjects ranging from system reconfjguration,
fault diagnosis, VLSI testing, and logic programming to object-onented databases for
VLSI CAD.

Dr. Gupta is a member of IEEE Computer Socnety and a recipient of the National ~
Science Talent Search Scholarship awarded by the Government of India.

ELLIS HOROWITZ received his B.S. degree from Brook-
lyn College and his Ph.D. in computer science from the
University of Wisconsin. He was on the faculty there and
at Comnell University before assuming his present post as
Professor of Computer Science and Electrical Engineer-~
ing at the University of Southern California. He has also .

tute of Technology (Technion). Dr. Horowitz has held
numerous administrative jobs including Associaté Chair-

and at U.S.C. He was also acting chairman of the Cbm-
puter Science Department at U.S.C. He is the author of
six books and over sixty research articles on computer
science subjects ranging from data structures, algorithms,

been a visiting Professor at M.L.T. and the Israel Instx-’

man of Computer Science at the University of Wisconsin.

the University of Southern California, Los Angeles from



and software design to computer science education. Dr. Horowitz has been a princi-
pal investigator on research contracts from NSF, AFOSR, ONR, aid DARPA. He is a
past associate editor for the journals Communications of the ACM and Transactions on
Mathematical Software. He currently serves on the technical advxsory boards of several
software companies and is an IBM scholar.

xiv



/

Contents
PREFACE : o ‘ ix
Parf |  Object-Oriented Databases—The Concepts 1
. 1 A GUIDE TO THE OODB LANDSCAPE ; 1

Rajiv Gupta, GE Corporateé Research and Dévelopment

Ellis Horowitz, University of Southern California

2 A PERSPECTIVE ON OBJECT-ORIENTED AND SEMANTIC
DATABASE MODELS AND SYSTEMS 12

Dennis McLeod, University of Southern California

3  ALGORITHMIC AND COMPUTATIONAL ASPECTS OF Gy
OBJECT-ORIENTED SCHEMA DESIGN . 26

Hyoung-Joo, Georgia Institute of Technology .

4 CONCEPTUAL DATABASE EVOLUTION THROUGH ;
. LEARNING 62

Qing Li, Australian National University
Dennis McLeod, University of Southern California



Part ll

THE HYPERMODEL BENCHMARK FOR EVALUATING
OBJECT-ORIENTED DATABASES

Ame J. Berre, Center for Industrial Resea;ch, Oslo, Norway

T. Lougenia Anderson, Servio Logi'c Development Corporation

TRANSITION TO OBJECT-ORIENTED DEVELOPMENT:
PROMOTING A NEW PARADIGM

George Konstantinow, Delco Systems Operations

Some Real Object-Oriented Databases

7

10

11

vi

AN OVERVIEW OF EXISTING OBJECT-ORIENTED
DATABASE SYSTEMS

Ellis Horowitz and Qiang Wan, University of Southern California

AN OBJECT-ORIENTED DATABASE SYSTEM TO SUPPORT

AN INTEGRATED PROGRAMMING ENVIRONMENT

Daniel Weinreb and Charles Lamb, Object Design, Inc.
Neal Feinberg, Symbolics, Inc.
Dan Gerson, Xerox PARC

PROGRAMMING WITH VBASE

Tim Andrews, Ontologic, Inc.

ABSTRACT STATE AND REPRESENTATION IN VBASE

Craig Damon, Juniper Software
Gordon.Landis, Object Design; Inc.

OBJECT SQAL

Craig Harris and Joshua Duhl, Ontologic, Inc.

75

92

101

101

117

130

178

119

_ Contents



!

12 INTEGRATING AN OBJECT SERVER WITH OTHER WORLDS 216

Alan Purdy, Instantiations, Inc.
Bruce Schuchardt, Servio Logic Development Corporation

David Maier, Oregon Graduate Center
NG . SRt
Part lll Applications 237

13 THE DEVELOPMENT OF A FRAMEWORK FOR VLSI CAD 237

Rajiv Gupta, GE Corporate Research and Development
Rajesh Gupta, Sheng Y. Lin, Ellis Horowitz,

and Melvin Breuer, University ‘of Southern California
Wesley H. Cheng, Hewlett-Packard

Ido Hardonag, Elan Computer Group, Inc.

14  OBJECT DATABASE SUPPORT FOR CASé A 261

Lung-Chun Liu, Silicon Graphics

Ellis Horowitz, University of Southern California

15 AN OéJECT-ORIENT ED MODEL FOR NETWORK
: MANAGEMENT : 283

Soumitra Sengupta, Alexander Dupuy, Jed Schwartz, Yechiam Yemini, Columbia
University .

16 AN OBJECT-ORIENTED GEOGRAPHICAL INFORMATION
SYSTEM 296

Ronald Wilhamson and Jack Stucky, Hughes Aircraft Corporation

17 USING AN OBJECT DATABASE TO BUILD INTEGRATED .
DESIGN ENVIRONMENTS ' ’ 313 -

Timothy Andrews, Ontologic, Inc.

Contents ' il



Part IV C++ and Persistence
18 A QUICKSTART INTRODUCTION TO C++

Rajiv Gupta, GE Corporate Research and Development

19 C++ AND COP: A BRIEF COMPARISON
Craig Damon, Juniper Software

20 ODE (OBJECT DATABASE AND ENVIRONMENT):
THE LANGUAGE AND THE DATA MODEL ‘

R. Agrawal and N. H. Gehani, AT&T Bell Labs

21 ONTOS: A PERSISTENT DATABASE FOR C++

L4
Tim Andrews, Craig Harris, IBM Almaden Research Center
Kiril Sinkel, Ontologic, Inc.

REFERENCES
AUTHOR BIOGRAPHIES '

INDEX

re vili

324

324

343

365

387

407
424

437

Contents



1 A Guide'to the O_ODB Landscape

Rajiv Gupfa and Ellis Horowitz

1.1 |NTRODUCTION,\

In the wake of tfg Falkland Islands war it was reported that the British destroyer HMS
Sheffield was s&% high seas because the database in its warning system was incor-
rectly programmed. Gemini V landed miles away from its designated landing point be-
cause of a flaw in its guidance program. Stories about false alarms from North American
Aerospace Defense Command because of situations unanticipated by.the C* software
are disquietingly common in software engineering folklore. What is described as the
“software crisis” is quite ¥gal. The above mishaps, which can all be traced to buggy
software, would convince e¥en the most optimistic practitioner of the craft that present
day large-scale programs can&est be regarded as fragile contraptions [Lin85].

Development of high-quality, large-scale software is widely acknowledged as
a tough undertaking. Design methodologies that promise to improve the quality of
software—notwithstanding the debate over how to measure software quality in terms
of correctness, robustness, extensibility, ease of integration, reuse and maintenance—
are of great interest to the design community.

Of the current software design methodologies, top-down decomposition of the
function to be implemented, with stepwise refinement, is by far the most widely practiced.
This design methodology starts with a very high-level description of the problem or task,
and gradually refines it into a set of subtasks until the problem is reduced to*a sequence
of manageable pieces. This leads to a tree-likg decomposition of the original problem.

Experience over the past three decades hak shown that this paradigm for software
construction leads to quick development of a proggam for the task at hand as it concen-
trates on what needs to be done. However, the resdiging progm\m are less maintainable
as the methodology concentrates on a very chameledic aspect of the program, viz., its



fxmctnou.’Over the hfetime of the program, the Ongmal function: mvanably changes and :
“becomes one of the many functions provided by the program. Also, the tree-like de-
- composition, based on a premise that will change over time, divides the program along
procedural lines with data structures and future reusability being second-order concerns.
A number of empirical studies have shown (see, for example [Boehm81]) that in such
an environment the effort required in constructing large-scale software increases rapidly
with the size of the program. -

1.1.1 Object Paradigm in a Nutshell

-

The object-oriented paradigm for program construction builds on the simple premise
that software organized along modular, self-contained “objects” is more maintainable,
extepsible and reusable than the conventional “action-oriented” approach where software

ided around procedural lines. This is a radical shift from the traditional top-down
approach. Instead of concentrating on what functions need to be performed, the focus
is shifted to the entities on which functions have to be performed. The object-oriented
design methodology leads to an architecture that is based on objects every system or
subsystem manipulates.

There are several key advantages of shifting the emphasis from actions to objects.
First, the basic objects in any application, in general, change much less frequently than
the functions the application is required to perform. This is especially true of database
programs. Even when the basic data entities do change, the change either introduces
new types of objects or is localized to a few object types. Ease of software integration
is another argument in favor of the object-oriented approach. It is difficult to combine
actions if the data structures used by them are incompatible. In this respect, pre-agreed
object modules hold a distinct advantage over pre-agreed function modules. The same
argument holds for reusability of software. The users of the system-provided objects do-
not have to reinvent the wheel every time a new facility is needed.

Object-oriented program construction begins with the identification of objects that
the applications will manipulate. Thus the key question the designers need to ask is,
“What are the basic entities that the program will need?” rather than “What function
will the program perform?” Once the set of objects and their characteristics are identified,
classes of objects sharing similar characteristics are defined. These classes are typically
organized in an inheritance hierarchy or lattice to describe interrelationships among
them.

‘A class should be viewed as a self-contained modular unit that specifies what can
be stored with objects of this class, and provides operations or methods that can be
performed on these objects. Thus the notion of class is quite close to that of an abstract
data type. In fact the object-oriented design of software systems can be thought of as a
collection of well-integrated abstract data types providing a core of functionality around
which complex systems can be built.

The basic tenets of the object paradigm are summarized below.

1. 'Make the system modules correspond to the data structures to be used. These
modules should be self-contained as far as possible.

2 ' A Guide to the OODB Landscape  Chap. 1



2. Implement each module as an abstract data type. Every module should correspond
to a class of data objects The interface to the object implemented by a module
should be explicit and concise. In addition, the user of the module should be given
acéess to minimal ififormation about the object, preferably through some layers of
abstraction (information hiding).

3. Organize the modules in a hierarchy/lattice reflecting the commonahty among the
object classes they correspond to.

4. Provide a set of generic operations which can act on objects of various classes.

One look at the above steps for object-oriented software construction would confirm
that they can be applied just as effectively to a database management system. The only
difference is that in the latter case the objects in question are persistent and outlast the
invocation of any individual program. This, however, lends further credibility to the
basic premise of the object paradigm that the data structures change less frequently than
~ the programs that manipulate the data.

; On the surface the object paradlgm for software construction in general, and
database management in particular, appears to be a marriage of software engineering
principles that have been known for a long time. Most of the concepts mentioned above
have been discussed at great length in the research literature in the past quarter century.
All these concepts, in one form or another, were present in early efforts such as Simula
67 (1966), Smalltalk (first version in 1972), CLU (mid-1970s), Mesa (1979), Modula-2
(1982), Ada (1983), and several others.

Is object orientation an old wine in a new bottle? Even though some in the
community view it that way, we differ with this characterization. Even if the parts of the
solution existed—and that should be no surprise as we are addressing the same problems
in large software design as those that ex1sted 25 years ago—it is this comiing togbther of
these disparate concepts that have given some a glimmer of hope. What makes the object
paradigm powerful and exciting is the symbiotic fusion of many basic solution strategies
that promises a concerted attack on the large software development problem. From this
point of view, many viniage wines, aged to perfection and harmoniously blended, in a
new bottle is perhaps a better description of the object paradigm.

1.1.2 Object-Oriented Databases

The last decade has witnessed the emergence of practical, general-purpose, relational
database management systems (DBMSs) and associated fourth-generation database
languages as state-of-the-art technology. Commercial DBMSs based on relational
and pseudo-relational concepts are now widely utilized in a variety of application
environments, on computers ranging from large-scale mainframes to small personal
computers.

Recent research and development efforts have resulted in yet another generation
of database technology: the so-called semantic' and object-oriented database (OODB)
systems. These advanced systems, now#beginning to appear as commercial products,
provide further database management capabilities and address some of the limitations
of relational and other record-oriented DBMSs (e.g., those based on hierarchical and
network data models).

Sec. 1.1 Introduction _ - . 3



This book is about this new generation of database technology that incorporates
the object paradigm in a database management system. Several issues are important
in the study of OODBs. What object-oriented concepts can be applied to databases?
How are these concepts incorporated in an OODB? How are OODBs constructed and
used? Can database management capabilities be merged into an object-ormted program-
ming language? The chapters that follow will provide answers to these and many other
qucstions.

1.2 TOPICS IN THE STUDY OF OODBs

Our brief introduction to the object-oriented concepts pointed out that applying these

. concepts in a database setting is what this book is all about. In this section we discuss
the key object-oriented concepts as they appear in the database context. Various issues
pertinent in the study of OODBs are outlined and an attempt is made to show how the

* various chapters of the book address these issues. This section is as much an introduction
to the book as it is to the field. We hope that by highlighting the salient points of the
various chapters the reader will be pointed in the proper direction.

1.2.1 The Basics

Part I of this book is a collection of chapters which talk about the basic OODB concepts
in general. Starting with an evolutionary history of OODB concepts, the steps involved in
logical design of an object-oriented schema are covered. This part then presents the issues
pertinent in schema evolution and benchmarking. Finally, guidelines for harnessing this
new technology in an environment dominated by conventional data structuring paradigms
are discussed.

The evolution of OODB concepts. The concepts that OODBs bring together
have been under development in diverse fields such as programming languages, compiler
theory, database theory and artificial intelligence. How these concepts evolved from early
semantic networks and relational models into object-oriented programming languages,
and then into OODBs, makes a fascinating story.

The book begins with an overview of the field from an evolutxonary perspective.
In the chapter “A Perspective on Object:Oriented and Semantic Database Models and
Systems,” Dennis McLeod, a pioneer in the field of semantic data models, traces the
evolutionary history of OODBs. The chapter is of a general nature. It requires no prior
knowledge of OODBs and is suitable for a wide audience.

Object-oriented schema design. A key step in the design of OODB:s is the
derivatiqn of classes that describe the data objects required by the applications and the
specification of interrelationships among them. This activity is referred to as the logical
design of an object-oriented database schema. Most applications require a wide variety
of changes before converging to an acceptable schema. In general, the users of OODBs
arrive at the desired schema for objects through trial and error.

Schéma design has not been thoroughly addressed in the database literature to
date even though a considerable body of research exists in the areas of Al knowledge

4 A Guide to the OODB Landscape  Chap. 1

i



representation, dependency theory, Al theorem proving, and graph algorithms to solve

some of the most fundamental problems in schema design. A unified framework for

logical design of an OODB schema that synthesizes existing research results from these

areas is essential for deriving schemata that are efficient, consistent and non-redundant.

The third chapter by Hyoung-Joo Kim, “Algorithmic and Computational Aspects

of Object-Oriented Schema Design,” looks at the issues and problems involved in logical

. schema design in an OODB. The basic steps involved in schema design are discussed.

Three fundamental problems in the process are identified and their computational com-

plexity studied. The latter portion of this chapter is quite detailed and readers may wish
to skip it in the first reading without any loss in continuity.

Schema evolution. Large applications. such as weather simulation software,
embedded computer systems for real time flight guidance, office information systems,
and payroll and accounting packages are never written in their final form the first time
around. An important issue in this respect is the ability to make a wide variety of
changes to the database schema dynamically. This pfocess is called schema evolution.
For practical applications of object-oriented databases, which evolve over time, some
form of schema evolution is indispensable. Unfortunately, changes to the schema, which
are common in many application environments, are in general inadequately supported by
existing database systems.

This fundamental problem concerning changes to the conceptual structure (meta-
data/knowledge) of a database is addressed in Chapter 4, “Conceptual Database Evolution
through Learning.” In this chapter, Li and McLeod explore methods for automatic object
flavor evolution using machine learning techniques.

Performance and benchmarking. For any new technology that claims to
solve some of the most nagging problems of an existing one, good performance is a
crucial condition for survival. If modeling power and methodological elegance are the
jewels in the OODB crown, performance, at least so far, has been its Achilles’ heel.
Improving performance is the central issue facing OODBs today. Another important
need is a method for unbiased evaluation in an environment for which OODBs are tar-
geted. Since most object-oriented databases are aimed to meet the needs of engineering
applications such as CAD and CASE, an application-oriented approach is more suit-
able. The chapter entitled “The HyperModel Benchmark” describes such an approach to
database evaluation. In this chapter, a generic benchmark that can be used to measure
the performance of any OODB is described at a conceptual level.

Transition to the object paradigm. In the past few decades very large sys-
tems have been built using the relational and other conventional database management
systems. These systems represent an astronomical investment in terms of effort, time,
and money. From this point of view a transition to object-oriented development and
promoting this new paradigm in the relational world is an important issue. In fact, for a
very large system, it is not clear what exactly is meant by the word “transition.” Should
the new applications embrace the new paradigm and the old ones be left untouched? Is
it possible for the two to co-exist in the first place? How does one go about convincing
the upper-level management that a change to object-oriented technology is warranted?

Sec. 1.2  Topics in the Study of OODBs 5



