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PREFACE

Our purpose in writing this book is to provide the undergraduate student of
engineering and science with a concise introduction to finite element methods
—one that will give a reader, equipped with little more than calculus, some
matrix algebra, and ordinary differential equations, a clear idea of what
the finite element method is, how it works, why it makes sense, and how to
use it to solve problems of interest to him. We imposed on ourselves three
constraints that we felt were of fundamental importance in designing a text
of this type.

First, the treatment should not be burdened with technical details that
are best appreciated by a more experienced reader. For instance, we feel that
discussions of the many variants of finite element methods, detailed aspects
of computational schemes for implementing these methods, and numerous
applications to problem areas in which the student may have little or no
interest are not appropriate in a first course on the subject at this level. Here,
we present the method in a form in which the truly salient features can be
exposed and appreciated. We choose to relegate those other special topics
to later, more advanced volumes.

Second, we did not want to produce either a cookbook or a handbook
on finite elements. Although we do give ample coverage of the operational
side of finite elements, we also seek to clarify and explain the basic ideas on
which these methods are founded. Without these, the student has little foun-
dation on which to build a deeper understanding of either these concepts or
their generalizations and, equally important, cannot apply the methods
intelligently to difficult problems.
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Finally, the book is not aimed at a specific and narrow area of applica-
tion. The finite element methods are, after all, methods for solving boundary-
value problems. Why should a student of,, say, heat transfer or fluid mechanics
be forced to master structural mechanics in order to learn something about
finite elements? We are particularly sensitive to this point because the first
course on this subject that we teach is populated by students with such
diverse backgrounds and interests as geology, chemical engineering, mathe-
matics, physics, civil engineering, nuclear sciences, aerospace engineering,
petroleum engineering, and computer science.

We have each been working on finite element methods for nearly two
decades, and this book has evolved as a result of our collective experience in
teaching and studying finite elements during this period. Our experience of
several years in teaching finite element methods has shown that problem
solving and writing and use of simple finite element computer programs is
the surest path toward understanding the method. The many exercises and
programming assignments should occupy a significant part of the students’
time during a semester’s study from this book. We strongly believe that this
time will be spent to good advantage.

The exercises vary considerably in effort required and in significance.
Some of the exercises reinforce, through specific examples, ideas set forth in
the text. Others extend the textual material and, in some cases, introduce
concepts that, although fundamental in nature, are not necessary to an intro-
ductory treatment.

We thank our colleagues and students who have contributed to our
understanding and presentation of this subject. We are particularly grateful
to David Hibbitt, Linda Hayes, and Gilbert Strang who read the entire
manuscript and made many helpful suggestions. We also express our appre-
ciation to B. Palmer for typing the first draft of the manuscript and to N.
Webster for assisting with revisions.

E. B. BECKER
G. F. CAREY
Austin, Texas J. T. ODEN
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A MODEL PROBLEM

1.1 ORIENTATION

The finite element method* is a general technique for constructing approxi-
mate solutions to boundary-value problems. The method involves dividing
the domain of the solution into a finite number of simple subdomains, the
finite elements, and using variational concepts to construct an approximation
of the solution over the collection of finite elements. Because of ths generality
and richness of the ideas underlying the method, it has been used with remark-
able success in solving a wide range of problems in virtually all areas of engi-
neering and mathematical physics.

Our aim in this chapter is to give a brief introduction to several funda-
mental ideas which form the basis of the method. For this purpose, we confine
our attention to the simplest, most transparent example: a one-dimensional,
“two-point” boundary-value problem characterized by a simple linear ordi-
nary differential equation of second order, together with a pair of boundary
conditions. We shall refer to this example as our “model problem.” Although
the model problem is neither difficult nor of much practical interest, both its
mathematical structure and our approach in formulating its finite element
approximation are essentially the same as in more complex problems of

* Throughout this volume, we refer to “the finite element method,” as if there were
only one. There are, in fact, a variety of methods that employ an element-by-element
representation of the approximate solution. Several of these are discussed in Volume
II of this series.
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greater significance. At many places in this chapter, we pass lightly over
points of some practical and theoretical complexity, postponing until later
a more thorough treatment.

1.2 THE STATEMENT OF THE MODEL PROBLEM

We begin by considering the problem of finding a function ¥ = u(x), 0 < x
< 1, which satisfies the following differential equation and boundary condi-
tions:

—u = x 0<x<]} (1.2.1)

u(0) = 0, ul)=20

Here the primes denote differentiation with respect to x (u"" = d*u/dx?).
A problem such as this might arise in the study of the deflection of a string on
an elastic foundation or of the temperature distribution in a rod.

The data of the problem consist of all the information given in advance:
the domain of the solution (in this case, the domain is simply the unit interval
0 < x < 1), the “nonhomogeneous part” of the differential equation (repre-
sented by the given function f(x) = x on the right-hand side), the coefficients
of various derivatives of u (in this case these are the constants — 1 and +1),
and the boundary values we demand the solution attain (in this case, zero at
x = 0and at x = 1).

The data in our model problem are “smooth”; for example, the right-hand
side f(x) = x and the coefficients are differentiable infinitely many times.
As a consequence of this smoothness, there exists a unique function # which
satisfies the differential equation at every point in the domain as well as the
boundary conditions. In this particular example, it is a rather simple task to
determine the exact solution to (1.2.1), u(x) = x — (sinh x/sinh 1). However,
in most technical applications, one or both of these happy features of the
problem are missing—either there is no solution to the classical statement of
the problem because some of the data are not smooth, or if a smooth solution
exists, it cannot be found in closed form due to the complexity of the domain,
coefficients, and boundary conditions.

As an example of the first kind of difficulty, suppose that instead of f(x)
= x being given as part of the data (the right-hand side of (1.2.1)), we have
the problem

—u'tu=dx—14), 0<x<1; u0) =0=ul) (1.2.2

where d(x — }) is the Dirac delta: the unit “impulse” or “point source”
concentrated at x = . The fact is that §(x — }) is not even a function but is
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rather a symbolic way of describing operations on smooth functions defined
by*
0(x — Po(x) = ¢(})

for any smooth function ¢ satisfying the boundary conditions. We can con-
vince ourselves that if any function u is to satisfy (1.2.2), then it must have a
discontinuity in its first derivative " at x = }; its second derivative " does
not exist (in the traditional sense) at x = } (see Exercises 1.2.3 and 1.2.4).

Something appears to be amiss! How can a function u satisfy (1.2.2)
everywhere in the interval 0 << x << 1 when its second derivative cannot exist
at x = 4 because of the very irregular data given in the problem?

The difficulty is that our requirement that a solution u to (1.2.2) satisfy
the differential equation at every point x, 0 < x < 1, is too strong. To over-
come this difficulty, we shall reformulate the boundary-value problem in a
way that will admit weaker conditions on the solution and its derivatives.
Such reformulations are called weak or variational formulations of the
problem and are designed to accommodate irregular data and irregular solu-
tions, such as those in problem (1.2.2), as well as very smooth solutions, such
as that of our model problem (1.2.1).

Whenever a smooth “classical” solution to a problem exists, it is also the
solution of the weak problem. Thus, we lose nothing by reformulating a prob-
lem in a weaker way and we gain the significant advantage of being able to
consider problems with quite irregular solutions. More important, weak or
variational boundary-value problems are precisely the formulations we use
to construct finite element approximations of the solutions. We describe such
formulations of our model problem in the next section.

Examples of problems for which exact solutions cannot be found explicitly
(even though they are known to exist) are found commonly in boundary-
value problems in two or three dimensions. It is in the solution of such prob-
lems that the true power of the finite element method has made itself felt.
The treatment of two-dimensional boundary-value problems begins in Chap-
ter 4.

EXERCISES

1.2.1 Give an example of a physical problem for which the model problem is the
mathematical statement.

* The operation d(x — 4)$ is sometimes written J.(,l 0(x — Hd(x) dx = ¢(}) for all

infinitely differentiable functions satisfying the boundary conditions $(0) = 0 = ¢(1).
Buteven this is incorrect or, at best, only symbolic, because there exists no integrable
function that can produce this action on a given smooth function ¢!
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1.2.2 Show that u#(x) = x — sinh x/sinh 1 is the solution of the model problem.

1.2.3 Consider the boundary-value problem

—u’(x) = 0(x — 1), 0<x<l
u(0) = 0, u(l) =0

where d(x — 1) is the Dirac delta corresponding to a point source at x = 1.
Construct the exact solution « of this problem and sketch « and «’ as func-
tions of x. What does the graph of #’” look like ? Does the classical statement
of this problem given above make sense at x = 1? Why?

1.2.4 Construct the solution # of the boundary-value problem (1.2.2) and sketch
u and «’ as functions of x. Comment on #”” and the meaning of the classical
statement of this boundary-value problem.

1.3 VARIATIONAL STATEMENT OF THE PROBLEM

One weak statement of the model problem (1.2.1) is given as follows: find
the function u such that the differential equation, together with the boundary
conditions, are satisfied in the sense of weighted averages. By the satisfaction
of all “weighted averages” of the differential equation, we mean that we
require that

J.l(—u"—l—u)v ax = flxv dx (1.3.1)
0 0

for all members v of a suitable class of functions. In (1.3.1) the weight function,
or test function, v, is any function of x that is sufficiently well behaved that
the integrals make sense.*

In order to describe this weak statement of the problem more concisely,
we introduce the idea of the set of all functions that are smooth enough to
be considered as test functions. We will denote the set of such functions,
which have zero values at x = 0 and x = 1, by the symbol H. To indicate
that a function v is a member of the set H, we use the notation “v € H,”
which is read “v belongs to H.” The variational statement (1.3.1) of our prob-

* Tt is easy to find functions that are not smooth enough to serve as test functions. For

example, if u(x) = x — sinh x and »(x) = x~3, then neither fol (—u"” + u)v dx nor

1
J-o xv dx have finite values and (1.3.1) does not make sense. There is, however, a

multitude of functions which are perfectly acceptable as test functions. The exact
specification of such functions is central to the theory of the finite element method
and will be discussed in detail later.
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lem now assumes the more compact form: find u such that

j'(—u"+u—x)vdx=0 forallv € H
0

4(0) = 0 (13.2)

u(l) = 0

Upon reflection, it is clear that, if (1.3.2) is true, there can be no portion
of finite length, however small, of the interval 0 < x << 1 within which the
differential equation (1.2.1) fails to be satisfied in an average sense. To see
this, we need only hypothesize the existence of such a region and show that,
as a consequence, (1.3.2) would not be satisfied. Consider the residual, or
error, in the differential equation, defined by the function r(x) = —u"" + u
— x. Suppose that r(x) is different from zero in some small region, such as
that shown in Fig. 1.1a. Corresponding to this particular r(x), we can choose
v(x) as shown in Fig. 1.1b.* Noting that the integrand in (1.3.2) is positive
in the interval ¢ < x < b and zero elsewhere, we see that the integral in
(1.3.2) cannot vanish (i.e., (1.3.2) is not satisfied), so that « cannot be a
solution of problem (1.2.1). Through various choices of v we can “test” the
differential equation in every portion of the region of interest, so (1.3.2)
does indeed require that (1.2.1) be true, on the average, over every subregion.

This weak statement of our problem, although seemingly less direct
than the classical statement (1.2.1), has a certain appeal for those motivated
by physical arguments. In modeling physical phenomena, it is often desirable
to measure (or at least to consider the measurement of) the data and/or
the solution of a boundary-value problem. Since any real measurement device
(strain gauge, thermocouple, etc.) will have finite size, these quantities can,
at best, be determined only in some average sense over small regions and not
at any particular single point. The weak statement of the problem can be
interpreted as assuring us that the solution will appear to be correct when
tested at any location in the region with an arbitrarily small transducer.

1.3.1 A Symmetric Variational Formulation
At this stage, there are two points that should be thoroughly appreciated:

1. The weaker formulation (1.3.2) is as valid and meaningful as the
original statement (1.2.1); indeed, the solution of (1.2.1) also satisfies
(1.3.2) and, in fact, is the (only) solution of (1.3.2).

* Although we do not give the equation of v(x), it is clear from the sketch that v is
smooth enough to serve as a test function.
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r(x) =—u"(x) + u(x) - x

(a)

v(x)

(b)

FIGURE 1.1 Example of a residual error function r(x)
= —u"(x) + u(x) — xand a smooth test function v(x). If uis the
solution to (1.2.1), r cannot, on the average, be other than zero
on any subinterval, a < x < b.

2. The specification of the set H of test functions is an essential ingredient
of an acceptable weak formulation.

Let us elaborate on point 2. Although it may not be immediately obvious,
the test functions in variational problems such as (1.3.2) may not belong to
the same class H of functions as the class A to which the solution belongs (see
Exercise 1.3.1). The set A to which the solution u belongs is called the class of
trial functions for such problems. Our smoothness requirements demand that
we consider the pair of sets of functions, A and H. For instance, u may be
chosen from a class of functions A which have the property that their second
derivatives, when multiplied by a test function », produce a function #"’v which
is integrable over the interval 0 << x << 1. On the other hand, no derivatives
of test functions appear in (1.3.2). Thus, even though (1.3.2) is a perfectly



