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Preface

Optimization techniques are used to find the values of a set of parameters
which maximize or minimize some objective function of interest. Such
methods have become of great importance in statistics for estimation, model
fitting, etc. This text attempts to give a brief introduction to optimization
methods and their use in several important areas of statistics. It does not
pretend to provide either a complete treatment of optimization techniques or
a comprehensive review of their application in statistics; such a review would,
of course, require a volume several orders of magnitude larger than this since
almost every issue of every statistics journal contains one or other paper
which involves the application of an optimization method.

[t is hoped that the text will be useful to students on applied statistics
courses and to researchers needing to use optimization techniques in a
statistical context.

Lastly, my thanks are due to Bertha Lakey for typing the manuscript.

B. S. Everitt
August 1986
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1

An mtroduction to
optimization methods

1.1 INTRODUCTION

A problem considered in all basic statistics courses is that of finding estimates
of the two parameters in a simple linear regression model relating a
dependent variable, y, to an explanatory variable, x. The model is usually
formulated as

yi= at+pxite; (1.1)
where x;,y;,i = 1,. . .,n are the values of the explanatory and dependent
variable for a sample of observations considered to arise from the model, and
the €;,i = 1,. . .,n are ‘error’ or residual terms with zero expected values,

accounting for how much an observation, y,, differs from its predicted value,
a+ Bx;.

The problem of finding estimates of the parameters, « and S, of the
regression model in (1.1) may be approached in several ways. Perhaps the
most common is to seek some goodness-of-fit criterion which measures, in
some sense, how closely the model agrees with the observed data, and then
choose values for the two parameters which minimize the chosen measure of
fit. An obvious goodness-of-fit criterion for the simple linear regression model
is the sum-of-squares of the error terms in (1.1), that is

S :;le? (1.2)

Clearly S does measure how well the observed values of the dependent
variable fit those predicted by the model, with smaller values of S indicating a
better fit. Consequently choosing as estimates of « and 8 those values which
minimize S is an intuitively reasonable procedure and is, of course, nothing
less than the well-known least squares estimation technique.

Another commonly occurring estimation problem in statistics arises when
we wish to estimate the parameter or parameters of a probability density
function given a random sample taken from the density function. For
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example, we may have a sample of n values, x,.. . .,x,. from an exponential
density function of the form

flx) =Ae ™ x>0 (1.3)

and we wish to estimate A. A very useful estimation procedure in this situation
is to form the joint probability density function of the observations, that is

L(Xy, .. XiN) = l_[ e M (1.4)

and choose as the estimate of A the value which maximizes -, which is
generally referred to as the likelihood function. This procedure will also be
well known to most readers as maximum likelihood estimation.

Both the estimation problems described above can be formulated in terms
of optimizing some numerical function with respect to a number of para-
meters, and many other statistical problems may be formulated in a similar
manner. It is methods for performing such optimizations and their application
in statistics which are the main concern of this text.

1.2 THE OPTIMIZATION PROBLEM

In its most general form the problem with which we will be concerned involves
finding the optimum value (maximum or minimum) of a function f(6,. . .. 6,,)
of m parameters, 6,,. . ..6,. We should note at this stage that from a
mathematical point of view there is little point in considering both maximiza-
tion and minimization since maximizing f is equivalent to minimizing —f;
consequently the discussion in the remainder of the text will normally be
confined to minimization. The values taken by the parameters may in some
situations be constrained and in others unconstrained. For example, in the
linear regression model of the previous section, the parameters « and 8 may
both take any real value; in other words, they are unconstrained. The
parameter of the exponential distribution in (1.3) is, however, constrained to
take only positive values. Some comments about the constrained optimiza-
tion problem will be made in Section 1.5.

Many of the concepts we shall need in discussing optimization methods can
be introduced via the case of a function of a single parameter, and Fig. 1.1
shows a graphical representation of such a function. This graph shows that the
function has two minima, one at #,and one at #;, a maximum at 6,, and a point
of inflexion at 6. The minimum at 6, is known as a local minimum since the
value of f(6,) is lower than f(8) for values of 6 in the neighbourhood of 6; the
minimum at 6, is known as a global minimum since f(6,) is lower than f(6) for
all values of 6. As we shall see later, amajor problem in complex minimization
problems is to decide whether we have found a local or global minimum.
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Figure 1.1 Function of a single parameter showing a maximum (62), a local minimum
(00), global minimum (#1) and point of inflexion (63).

The classical approach to the problem of finding the values 6, and 6, is to
note that at both 6, and 6, the gradient of f(0) is zero, so that §,and 6, will be
solutions of the equation

df
0 0 (1.5)
As we can see from Fig. 1.1 the value 6,, at which there is a local maximum,

and 63, at which there is a horizontal point of inflexion, also satisfy this
equation; consequently satisfying equation (1.5) is a necessary but not a
sufficient condition for a point to be a minimum. However, examining again
Fig. 1.1, we see that at 6, and 6, the gradient changes sign from negative to
positive, at 6, the change is from positive to negative, and at 0 the gradient
does not change sign. So at a minimum the gradient is an increasing function;
the rate of change of the gradient is measured by the second derivative so for a
minimum we require

d*f

T >0 (1.6)

when evaluated at the suspected minimum point.
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These ideas may be extended to the minimization of a function of several

variables, f(6,,. . .,6,,), so that a necessary condition for a minimum is that
o " of
f—f:f—f=...=f—f=() (1.7)
a0, 06, a6

Solutions to these equations may also represent maxima or saddle points, and
these various possibilities are illustrated for a function of two variables by the
contour diagram shown in Fig. 1.2.

On this diagram, P,, P,, P; and P, are points at which equations (1.7) are
satisfied; the corresponding values of fare 0.0, 2.5, 6.5 and 3.5. P, is the global
minimum, that is the required overall minimum of the function. P, is a local
minimum, that is f(P,) is less than f for all points in the immediate neighbour-
hood of P, but f(P,)>f(P,). P is a local maximum of f, and P, is a saddle
point; along the direction AB it corresponds to a maximum of f, while along
CD it corresponds to a minimum.

The sufficient condition for a solution of (1.7) to be a minimum, corres-
ponding to the requirement given in (1.6) for the single-parameter case, is
that the matrix H with elements /4 given by

(1.8)

T
el

Figure 1.2 Contour diagram of a function of two parameters having a local maximum,
a local minimum and a saddle point.
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be positive definite when evaluated at the point being considered. H is known
as the Hessian matrix; it is symmetric and of order m X m.

1.3 SOME SIMPLE EXAMPLES

Let us return to the two examples described in Section 1.1 to illustrate a
number of the points made in Section 1.2. Consider first the problem of the
maximum likelihood estimation of the parameter of an exponential density
function. The likelihood function for a sample of n values is given by

L(xiy ..., X A) = [ Ae ™ (1.9)
i=1

We wish to choose that value of N which maximizes . or, equivalently
minimizes —%. As with most maximum likelihood problems a simplification
is achieved if we consider not .# but the log-likelihood function, L, given by

L = log.(¥) (1.10)

#and L clearly have their maxima at the same points but in practice L is
usually far more convenient to deal with. For the exponential density

L =nlogA—\ ) x, (1.11)
i=1
Consequently the function we require to minimize is
F = \Zx;—nlog,\ (1.12)

Differentiating with respect to A gives

8 n
Setting dF/dA to zero leads to the following estimator for A:
A=n/) x (1.14)

i=1

that is the reciprocal of the sample mean. Clearly this corresponds to a
minimum of F since

which is always positive.
Now let us consider the least squares estimation of the two parameters in
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the simple linear regression model. This involves minimization of the
goodness-of-fit criterion specified in (1.2), which may be rewritten as follows:

§=) (i—a—px)’ (1.16)
i=1

so that the equations given by (1.7) take the form

as - N

o= -z‘;(},.—a—m,)—o, (1.17)
B e 2 Y xima—pr) =0 (1.18)
B i=1

Solving these two equations leads to the following well-known estimators for
a and B3:

a =y fx, (1.19)
- Cxy
= 2
B = (1.20)
where
Cxy =) xiyi— ). xi ). yin, (1.21)
=1 i=1

i=]

n n 2
Cxx =) x,~2—( Z x,-) In, (1.22)
=1 i=1

The Hessian matrix for this problem is given by

[ 425 9%
9t dadf3
H = . (1.23)
9%S a*s
aBoa  B°

2n 2} x

= (1.24)
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It is easy to show that H is positive definite and consequently that (1.19) and
(1.20) correspond to a minimum of the function §.

In both these cases the solutions to the equations specifying the minimum
(equations (1.5) and (1.7)) could be solved directly to give estimators for the
parameters which were simple functions of the observations. In many situa-
tions, however, these equations cannot be solved directly, and other
approaches must be adopted to the minimization problem. Some general
characteristic of the type of procedure necessary are discussed in the following
section; detailed descriptions of specific techniques will be left until Chapters
2and 3.

1.4 MINIMIZATION PROCEDURES

The minimization techniques to be discussed in the next two chapters all have
certain features in common. The most obvious is that they are iterative and
proceed by generating a sequence of solutions each of which represents an
improved approximation to the parameter values at the minimum of f'in the
sense that

1(0:.)=1(6)) (1.25)

where ;. and 6, are vectors containing the values of the m parameters at
iterations i+ 1 and i. Such procedures require an initial set of parameter
values, 6, generally supplied by the investigator, from which successive
approximations arise by means of an equation of the form

0,‘+| = 0,""/1,‘(1,. (]26)

In this equation d, is an m-dimensional vector specifying the direction to be
taken in moving from 6, to @,., and A, is a scalar specitying the distance to be
moved along this direction.

The choice of a suitable direction and distance (often referred to as the step
size) to ensure that (1.25) is satisfied may be made in a number of ways; it may
rely solely on values of the function plus information gained from earlier
iterations, or on values of the partial derivatives of f with respect to the
parameters. Techniques adopting the first approach are generally known as
direct search methods and are discussed in Chapter 2. The second type of
approach, gradient methods are the subject of Chapter 3.

A problem common to all the techniques to be discussed in the next two
chapters is how to decide when the iterative procedure has reached the
required minimum. In general such decisions are taken on the basis of the
sequences {6;} and {f(6;)}, and possible convergence criteria are

|f(0:.1) —f(8)|<e (1.27)
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and/or
[0 —06i]|<€ (1.28)

for prescribed values of € and €'. Although such criteria are commonly used
and are, in many situations, satisfactory, they can in some circumstances
cause the iterative procedure to be terminated prematurely. For example,
Fig. 1.3 illustrates a case where terminating the iterations on the basis of the
fractional changes in f(@) being less than some small number, causes the
procedure to finish on a flat plateau. Figure 1.4 illustrates a case where the use
of (1.28) causes premature termination on a very steep slope.

(8

iz (9“1)—f(9i) — et — :—_—__;
|
|

|
I
|
6; I

1

Figure 1.3 Premature termination on a flat plateau.

r(e)
(6, b — — — —
FUO] o e s s s e )
|
I
1l
6.6 ]

170+1

Figure 1.4 Premature termination on a steep slope.
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In order to guard against such possibilities a more stringent convergence
criterion might be used in which (1.27) or (1.28) were required to hold for
each of a number of consecutive iterations.

Termination criteria such as (1.27) and (1.28) are strongly dependent on
the scaling of both the objective function, f, and the parameters, 6,,. . .,0,,.
For example, if e = 10 *and fis always in the interval (10 7, 107), then it is
likely that any values of 6,,. . ., 6, will satisfy (1.27). A problem arises with
(1.28) if the parameters are on very different scales, since if m = 2, and #,isin
the range (10, 100) and 6, in the range (0.001,0.01), then (1.28) will virtually
ignore the second parameter. This problem of scale will also affect those
optimization methods which are not invariant with respect to scale changes.
The obvious solution to this problem is to choose units for the parameter so
that each has roughly the same magnitude. For more detailed comments
about stopping criteria and scaling see Dennis and Schnabel (1983, Ch. 7).

1.5 CONSTRAINED MINIMIZATION

In the discussion in previous sections it has been implicitly assumed that the
elements of the parameter vector, 8, are not subject to any constraints. This is
not always the case, however, and problems do arise where we wish to
minimize some objective function, f(8), subject to various constraints on the
parameters. Such constraints may be equalities, for example,

0i+03+63=1 (1.29)
or inequalities,

0,+6,+6,>0 (1.30)

Constraints on the parameters in statistical problems may arise for a number
of reasons; the parameters may, for example, be variances which must be
greater than zero, or proportions which must lie between zero and one. '

The simplest method of dealing with constrained optimization problems is
to reparametrize so that they become unconstrained. For example, if an
original parameter is subject to constraints of the form

0:>c; (1.31)
ai<01<bl (132)
where a;, b; and c; are constants, then defining a new parameter «; as

al = 6,—c; (1.33)

Sinza,- = (ei_a,')/(b,'_‘a,') (134)
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removes the constraints (1.31) and (1.32) and allows an unconstrained
optimization for the parameter «; Particularly common in statistics is the
situation where a; and b; in (1.32) are zero and unity and the parameter 6,
represents a proportion or probability. A commonly used transformation in
this case is the logistic,

b

i (1.35)

a; = ]0g

More formal methods of dealing with constrained optimization problems
such as Lagrange multipliers and penalty functions are described in Rao (1979.
Ch. 7). It is important to emphasize, however, that many problems with
simple constraints can be solved by unconstrained algorithms, because the
constraints are satisfied by the unconstrained minimizer.

1.6 SUMMARY

Many problems in statistics may be formulated in terms of the minimization of
some function with respect to a number of parameters. In most cases the
equations for a minimum arising from (1.7) cannot be solved directly, and
iterative procedures are needed. During the last two decades there have been
major advances in such techniques and this has had considerable impact in
many branches of statistics, as we shall attempt to describe in later chapters.
The next two chapters concentrate on describing a number of commonly used
minimization methods. It should be emphasized that they do not attempt to
provide a comprehensive account of such techniques, only to provide a basis
for a discussion of their use in a statistical context. Many excellent detailed
accounts of optimization methods are available elsewhere, for example,
Bunday (1984), Walsh (1975) and Rao (1979).
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2.1 INTRODUCTION

In this chapter we shall describe a number of direct search methods for
minimization. Such methods do nor require the explicit evaluation of any
partial derivatives of the function being minimized, but instead rely solely on
values of the function found during the iterative process. In some cases these
function values are used to obtain numerical approximations to the deriva-
tives of the objective function, in others they provide the basis for fitting
low-order polynomials or surfaces to the function in the vicinity of the
minimum. We first consider the minimization of a function of a single
parameter, and then the multiparameter situation.

2.2 UNIVARIATE SEARCH METHODS

Search methods for minimizing a function of a single variable fall into two
classes: those which specify an interval in which the minimum lies and those
which specify the position of the minimum by a point approximating to it. In
order to apply the former we shall assume that an initial interval known to
contain the minimum is given and that the function is unimodal within this
interval. With such methods we literally search for the minimum of the
function in some interval a < 6 < b by evaluating the function at chosen points
in the interval. The alternative approach is to use a few function values
evaluated at particular points to approximate the function by a simple
polynomial, at least over a limited range of values. The position of the
function minimum is then approximated by the position of the polynomial
minimum, the latter being relatively simple to calculate. We begin with an
example of the first approach followed by one of the second.

2.2.1 Fibonacci search

We suppose that the required minimum is known to be within the interval
(61, 6,), and that two points, 65 and 6,4, are to be chosen within this interval so
that

0,<6:<6,<6, (2.1)



