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Author’s Preface

Analysis tackles the issues which were fudged in the development of the
calculus. With the recent trend away from formal proof in school, it may
not be evident to students beginning higher education that there is a problem
to be attended to here. Indeed, some school leavers have seen virtually none
of the ideas of proof and do not necessarily accept that it is a vital part of
mathematics. This book was written in acknowledgement that most present-
day students have this background.

The main aim of the book is to present the accepted core material of
analysis in such a way that the development appears fairly natural to the
reader. A detailed discussion of the real number system, which is necessarily
technical, is postponed until other matters have highlighted the need for it,
while I have tried to maximise the number of results whose value can be
appreciated from a standpoint other than that of the analyst, so that the
subject is not seen as merely self-serving. This approach, while it could not
be sustained throughout a degree course, seems to be correct for the start
of a subject. The technical jargon of analysis cannot sensibly be avoided but
it can be minimised and I have taken the view that a definition is not worth
the sacrifice of memory unless it is used often.

The principal difference between this book and many others is that atten-
tion is devoted not only to giving proofs but to indicating how one might
construct these proofs, a rather different process from appreciating the final
product. The completeness of the real number system is assumed in the form
of Dedekind’s axiom of continuity, because this is more plausible than some
of its immediate consequences.

Logically, this book presumes no knowledge of calculus, but it would be
rather pointless to start analysis without that, and I have tacitly relied on
calculus for some of the motivation. This is particularly true of Chapter 11,
on functions of several variables, where the experience of grappling with the
problems which arise in practice is a necessary supplement to the theory.

The book contains many problems for the reader to solve, designed to
illustrate the main points or to force attention onto the subtler ones. Tackling
these problems is an essential part of reading the book although the starred
problems may be regarded as optional, being more difficult or more peri-
pheral than the others.

I should like to thank my colleagues at Reading, especially David White,
for comments and useful conversations over the years and the students who

7



8 Author’s Preface

have been subjected to this course for their comments. In particular, I am
grateful to Michael Sewell for the final impetus which made me write it, to
Robin Dixon for help with the diagrams, to Joyce Bird and Rosemary Pellew
for deciphering my handwriting and typing it so expertly and to Ellis
Horwood and his staff for their editorial and production cooperation.

Reading, February 1987 David Stirling



CHAPTER 1

The Need for Proof

“If a man will begin with certainties, he
shall end in doubts; but if he will be content
to begin with doubts, he shall end in
certainties.”

Francis Bacon.

Although mathematics is usually thought of as a science, it differs from most
of science in one important respect—it is not based on empirical results
which may later be altered by improved evidence. Thus physics, for example,
is based on the prediction of various consequences of the basic laws’ of the
subject, but since these laws are derived from experiment and observation,
they may be revised from time to time if their consequences turn out to conflict
with what happens in the real world. Mathematics, on the other hand, is
not based on experiment but is a more abstract creation whose results are
true in a way that is not subject to later revision. A mathematical result,
once established, is known to be true without reservation.

At its heart, mathematics is about numbers, which are already an abstrac-
tion: the thing that two sheep and two apples have in common (the ‘two-ness’)
is abstract. Once we have accepted the idea of number, we have to find out
the properties of the system we have created, that is, deduce them from our
basic ideas. After we have discovered these, they remain true for all time and
are not subject to the periodic revision that occurs with scientific laws.
(Nevertheless, although the mathematics remains constant, it is at least
conceivable that revisions in scientific laws could dramatically alter its
usefulness.)

Having said that mathematics is a man-made structure in which results
are deduced from some basic properties, let us consider the sort of processes
involved. To fix our ideas here, let us look at a particular set of problems:

(i) V(x+3) =1 — %)+ /(1 +2x),
(ii) /(x+3) = /(1 —x)— /(1 + x),
(i) /(x+3) = /(1 + %) — /(1 — X).

Before starting, recall that the ,/y sign denotes the non-negative square root
of y.

Let us start with the first equation, |/(x+ 3)=./(1—x)+./(1+x).
Squaring both sides gives

X+3=1—x+2(1=x)/(1 + %+ +x),



10 The Need for Proof [Ch.1

and, on rearranging, we obtain
x+1=2./(1=x)/(1+x).
Squaring now yields
x2+2x+1=4—4x2
whence, in turn,
5x242x—3=0,
(5x =3)(x+1)=0,
x=3/5 or x=-—1.

We conclude that the solutions should be 3/5 and — 1. If we are suspicious
of this we can always test these values in equation (i) to check that the
equation is satisfied. For example, letting x = 3/5 gives \/(x + 3) = /(18/5) =
3,/(2/5) while

JU =)+ /(1 +x) = J(2/5) +/(8/5) = 3,/(2/5)

so that x = 3/5 is indeed a solution. A simpler calculation shows that x = — 1
is also a solution, and we have completed the problem.

Now let us try equation (ii): /(x + 3) = /(1 — x) — /(1 + x). Squaring gives
x+3=1-x-2/(1—x)\/(1+x)+1+x which we rearrange to give
x+1=—2/(1—-x)y/(1+ x). Squaring again yields x>+ 2x + 1 =4 — 4x?
which, as before, has solutions x = 3/5 and x = — 1. If we now test x = — 1
we obtain \/(x + 3) = \/2 while /(1 — x) — /(1 + x) = \/2 — /0 = /2 50 that
x = —1 satisfies equation (ii). However, putting x =3/5 gives \/(x +3)=
J(18/5)=3,/(2/5) while /(1 —x)— /(14 x)=./(2/5)—./(8/5) = J@2/5)—
2,/(2/5)= —/(2/5) so in this case only x= — 1 is a solution of (ii). Our
method has produced one true solution and a spurious one.

If we consider equation (iii), /(x + 3) = /(1 + x) — /(1 — x), and apply the
same method we obtain, after squaring, the equation x+3=1+x—
2,/(1 + x)-/(1 — x) + 1 — x which simplifies as in equation (ii) to give x = 3/5
or x = — 1. In this case, testing x = — 1 yields \/(x + 3) = \/2 and /(1 + x) —
J(—=x)=—/2 while putting x=3/5 gives ./(x+3)=3,/(2/5) and
J( +x)— /(1 —x)=./(2/5); both ‘solutions’ are spurious.

What is happening here? The method we have used to solve these equations
is capable of introducing completely spurious numbers, so that we seem to
need to check the answers. Since we do not normally need to check answers
(except to correct the very human failing of making mistakes—and there are
none above), why should we need to here? The resolution of this apparent
difficulty is tackled in Chapter 2.



