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ON THE STRUCTURE OF HIGHER TERMS OF THE
SPECTRAL SEQUENCE OF A FIBRE SPACE -

WrroLp HurEwiczt aND EDWARD FADELL*

1. Introduction
Let (E, B, p) denote a fibre space! with B arcwise connected and (E,, d,), r =
1, 2,..., the associated spectral sequence. Furthermore, let F ==1p~1(b),

b € B denote a fixed fibre. Then a well-known result of Leray-Serre states that
E, = C(B, H(F)), the singular chains of B with H(F) as coefficients, and d, : &; —
E, is the boundary operator 0 : C(B, H(F))— C(B, H(F)) in the sense of local
coefficients, where (B, b) operates on’ H(F) in the usual manner. Hence, E, =
H(B, H(F)) where the homology is in the sense of local coefficients. In case,
(B, b) = 0, therefore, E, = H(B, H(F)) where the coefficient group H(F) is
taken in the ordinary sense. In [2], the authors extended this latter result and
showed that in case B was r-connected that £, = H(B, H(F))fori =2,---,r + 1
and d;, = 0 for ¢ = 2, - - - r. The purpose of this paper is to extend this result still
further. An alternate way of stating the above Leray-Serre result is that if wo(B) =
0, then F, depends only upon B and the action of 7,(B, b) on H(F). Here we will
show that if Bis r — 1 connected then E; == H(B, H(F)) for2< i< rand E,
depends only upon B and the action of =,(B, b) on H(F). More precisely, we first
show that m (B, b) and H(F) are paired to H(F), r > 1. Then, in case Bis r — 1
connected, B, = H(B, H(F)) for i =2,-+-,rd,=0for:=2,---,r—1and
d,: E,= H(B, H{F))— E,is given by the cap product

dlh)=1y N Bk, h € H(B, H(F))
where y is the characteristic cohomology class of B and the cap product is defined in
terms of the pairing of =,(B, b) and H(F) to H(F)2.
. Remask. The corresponding résult for singular cohomology is also valid, where
cup product replaces cap product and =, (B) and H*(F, () (the cohomology group
of F with coefficients in @) are suitably paired.

2. Preliminaries

2.1. FIBRE sPacES. In this paper we employ the concept of fibre space as given
in [1] and for the reader’s convenience we recall the basic definitions. Given a triple
(E, B, p) where p: E— B is a map, let Q_ denote the subset of E X B! given by

Q, = {(e, ) € E X Bl:ple) = w(0)}.

-1 Due to the untimely death of Professor Hurewicz, the second-named author has prepared
this joint account of their research and accepts.full responsibility for its accuracy.

* Work on this paper was supported, in part, by the Wisconsin Alumni Research Foundation.

1 In this paper we used the term fibre space in the sense of [1], see §2.

* This simple description of d, was suggested by Norman Steenrod.
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2 WITOLD HOUREWICZ AND EDWARD FADELL

Then, we have a natural map  : B — Q, given by

Ble) = («(0), p(ax))

where p(a)(t) = p(«(t)), 0 < ¢ < 1. Finally, we say that (E, B, p) is a fibre space
provided $: Ef — ), admits a cross section, i.e. a map A:Q — ET such that
P A = 1.3 The map A is referred to as a lifting function. It is easy to show that
any two lifting functions are homotopic in the class of lifting functions, i.e. given
any two lifting functions Ay, A;, there exists a homotopy H : Q, X I— ET such
that

() Hy = Ao, Hy = Ay

(ii) PH[(e, ), t] = (e, w), t €1, (¢, w) € Q,.

The following fact will also be used in the sequel. Let £ denote the space of
paths in £ emanating from a fibre F, i.e.

E = {0 e E': a(0) € F}

where F = p~1(b), b € B. Then, if A is a lifting function for the fibre space (E, B, p),
let A : £ — E be given by

A@) = A(a(0), pa), x € E.

Then one shows easily that A is homotopic to the identity map 1: £ — £.

2.2. SINGULAR THEORY BASED ON CUBES. Let X denote a topological space and,
employing the notation in Serre [3], @,(X) the free abelian group generated by
singular n-cubes in X. Letting D, (X) denote the subgroup generated by degenerate
n-cubes, we set C,(X) = @,(X)/ D, (X). Then C(X) = >, C,(X) is called the group
of singular chains in X (based on cubes) with integral coefficients. For an arbitrary
coefficient group G we set C,(X, @) =C,(X) ® @ and C(X, Q) = 3,C (X, G).
Also, we set C"X, @) = Hom (C(X), ®). C*(X, Q) = 3, C"X, @) is then the
group of singular cochains with coefficients in ¢. '

The boundary operator 9 in C(X) is given by

\oral
Ou = 3P (—i) [Aju — Au]*
where % is a singular n-cube and
(lsu)(xly Tty xn_—]_) - u(x]_’ X, B Xttt xn—-l)

for e =0,1; 1 < 1< n. Employing 9, C(X, G) and C*(X, G) become chain and
cochain complexes, respectively, and we have therefore the singular homology and
cohomology groups of X, namely

3 This definition is easily seen to be equivalent to sssuming the validity of the Covering
Homotopy Theorern for all spaces as applied to (E, B, p) and hence is stronger than the defini-
tion of fibre space in the, sense of Serre.

4 This 2 differs in sign from that employed in [3].
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2.3. Cap ProDUCTS. Let u denote a singular n-cube in X. Following Serre [3],
we define certain faces of u as follows: Let H denote a subset of p elements from the
set of indices {I,---,n} and K the complement of H, containing, therefore, q
elements where p + g = n. Let ¢z : K— {1, -, g} denote a strictly monotone
function. For ¢ = 0 or 1 we let 1%u denote the following g-face of u

(Agu)(@y, * - - xq) = u(Yy, """, yn)
where
Yy, =¢ for ieH
Y, = oxli) for ¢ EK.

Also, set sgn H = (—1)” where v is the number of pairs (¢, §), ¢ € H, j € K such that
T > ]

Suppose now that the groups @, and G, are paired to G. Forg, € G,, g, € Q,,
lét (9,4, 9,) denote the element of G obtained from pairing g, and g,. For
f1eCYX, @), u,,, a singular cube in O, (X), set

fin u,,®gs= Dgzsgn H lku ® (f1(A%u), gs): 92 € Gy
It is not difficult to show the usual cap product identity
a(fq n uj;+q'® 92) - (—1)p 6fq N uerl ® g2 +fq N auz)+a ® g2
where § is the differential operator in C*(X, G,). Therefore, the pairing of C%(X, d,)
and O,1o(X, Gy) to C (X, G) leads to a pairing of H¥X, @,) and H, (X, Gy to
H,(X G).

P

REmMARK. The above cap product differs, at the homology level, from the
definition (adapted to cubical theory) given in Eilenberg [4] by a factor of (—1)%¢
where n is the dimension of the second factor. In comparison with the above
definition of f¢ N u,,, ® g,, the Eilenberg definition (adapted to cubical theory)
would read

U0y, ® gy = Sggn H i%u © (f43ku); gy).

2.4. THE SPECTRAL SEQUENCE. Let (E, B, p) denote a ﬁbre space. We filter
A = C(E) singular chains of E (integral coefficients) just as in Serre Bl fuisa
singular n-cube in X, a coordinate index 7,1 < 4 <{ n is called db (degenerate base)
for u if .

pulzy, - PSR VTy) = DUYL s Y L Y)
for arbitrary z;, y;. Otherwise ¢ is called a pb (proper base)-coordinate for ». Then,
we set
dim, # = max pb coordinate index for u.
The filtration
0_____A—1.g AOg ...gAPgA?+lg . e
is obtained by letting A? denote the subgroup of.4 generated by singular cubes u
such that dim, » < p. The spectral sequence associated with this filtration can be
obtained as follows: E??, 1 < r <C 00, is the image of ,, where

H, (A% A" ")y H (A", A7), n=p+4gq
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is the map induced by the natural injection i. Furthermore, the differential
operator

- Fng p—r,q+r—1
d, : P4 Eo—ra+r-

is just the boundary operator
a* :Hn(A”""_l, A”_l)—>Hn_l(A”‘1, Ap—r—l)

for the triple (AP+-1, 471, 4#-r-1) restricted to EP, n=p-q.
2.5. EXTENDED 7-SKELETON OF AN %-CELL. Let I” denote an n-cell » > 1 and r
aninteger 1 < 7 < n. Asin §2.3, let H denote a subset of relementsfrom {1, - + - , n}

and K the complement of H. Let « : K — {0, 1} denote a function on K taking the
values 0 or 1. Then set

Fe={el":z,=ak) for keK)}

Then, F°1‘(‘is an ordinary r-face of I". Now, let H denote a set of » + 1 eléments
from {1, - - -, n} and K its complement. Let (¢, ) denote a fixed pair of indices in B
and & : K — {0, 1} a function on K with 0 or 1 as values. Set

F";-‘z(i,j) ={xel:z, = &(}c) . for keRandz, =z}

We call F‘;‘—z(i,' J) a diagonal r-face of I". Let F, denote the set union of all the
ordinary r-faces and F, the set union of all the diagonal r-faces. Then F¥ — F,U F,
will be called the extended r-skeleton of I™.

Now, let X denote a topological space and @(X) = >, @.(X) as in §2.2. Let
@*(X) denote the subgroup of @(X) generated by singular cubes

w: (I, F¥)— (X, z,)
~ wheie z, is a fixed element of X, Then, set
C7(X) = (@ (X)/(@(X)N D(X)).

The following lemmas will be used in the sequel and their proofs, follow standard
lines.

Lemma 1. If X is r-connected, i.e. (X, z) = 0, 2 < r, then the chain complexes
Cr(X) and C(X) are chain equivalent and hence the singular homology groups of X
may be based on singular cubes whose extended r-skeleton lies at the fized point x,.

Lemwma 2. If (E, B, p) 3 a fibre space with B r-connected, then the singular homology
groups of E may be based on singular cubes whose extended r-skeleton lies in the fibre
F = p71(b), b € B a fixed base point. -

2.6. A HOMOTOPY ADDITION LEMMA. Let F denote the extended » — 1 skeleton
of I, n. > 1, and let

w: (1" F)— (X, )

X a space, z, € X, denote a map. Then u represents an element « in 7, (X, x,).
Furthermore, let

Uyt (1% I™) — (X, @)
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denote the map given by

uk(x]_! e , xn) == u(yl’ Y yn)
where . ;
y=zx; 1<k
Y =2,
Y=22q 1>k
Since 4 maps the extended n — 1 skeleton of I* into zy, w, maps I” into z, and
hence u, represents an element o, in 7,(X, z;). The following lemma is then valid.

Its proof follows standard lines and is omitted.
LemMMA. D5 (—D)" * ey = a.

3. Pairing = ,(B) and H(F, @) to H(F, @), n > 1

Let (E, B, p) denote a fibre space, F = p~(b), b € B, a fibre and = (B b) =

7,(B),n > 1,a homotopygroup of B. Let a € 7,(B)with representative f : (I" %) —
(B, b). Also, let v:I?— F, ¢ > 0, denote a singular g-cube in F. We define
a singular ¢ +n — 1 cube (f, ») in F as follows. For z e I#t*1 set "lr =
("7, Tpq)y ¥ =(2,, """, T4,_y). Then, if A is any lifting funétion for
(E, B, p)set ‘

(f, v)(&) = Alv(x?), o("1x))(1)

where w(*z) is the loop in B given by
w("z)(t) = f(* =, t).

If now, h € H (F, G) is a homology class with representative cycle z = >, v, ® g,,
we denote by («, B) e H, ,_, (F, @) the homology class containing the cyecle
(f, 2) = 2;(f, v;) ®g,. It is easy to show that (f, z) is indeed a cycle and (a, &) is
mdependent of the representatives f and z chosen, as well as the lifting function A
employed. Furthermore, bilinearity, namely

(0 + o', h) = (o, B) + (&, B)
(¢, + B') = (o, B) + (o, &)

follows easily and hence ., (B) and H (F, G) are paired to H,,, ,(F, G).
-An alternate description of this pairing may be given as follows. Let Q denote
the loop space of B based at b € B. Then, any lifting function A gives rise to a

A:Qx F—>F
map as follows:

Aw,z) = Az, w)(1), weQ, =zckF.
Applying the Kiinneth Theorem, we obtain induced homomorphisms
Ay H Q) ® H(F,G)— H, (F, Q).
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.Then, the pairing of =,(B) and H(F, G) to H(F, G) is given by the composition
homomorphism

. i®l j®ol
m,(B) ® H(F, &) —> m,_,(Q) ® H(F, @) —

A
H, (Q)® HF, @) — > H(F, @),

where ¢ : 7,(B) — m,,_,(Q) is the standard natural isomorphism and j : 7,_,(Q)—
H, ,(Q)is the Hurewicz homomorphism. The two descriptions are easily seen to
yield identical pairings. We shall, however, have need for the explicit form of the
pairing given initially in terms of representatives of homotopy and homology
classes.’ )
4. The basic map angd identity
4.1. THE BASIO MaP. We assume in this section that B is a fixed arcwise
connected topological space and b € B a fixed base point. Let B be the space of
paths in B starting at b, i.e. B = B'(0,5). B is a fibre space over B with map
&: B— Bgiven by
fw)=w(l), wedb.

Let C(B) and 0(B) denote the singular chains of B and B, respectively. We define
a dimension preserving homomorphism (not a chain map)
@ :C,(B)— C,(B)

as follows. Let u denote a singular n-cube in B, and let p denote an index between
1 and »,ie. L p< nand ¢g=n— p. As in §2.3 let F denote a subset of P
elements from {1, - - -, n} and K its complement. For such an H we first define a
homomorphism

9% : Co(B)—>C,(B)

as follows. Let «: H—{l,---,p}, f: K— {p+1,---,n} denote increasing
functions. For x e I", set

y(x) = (yli T yn)’ 2(z) = (Zl, R, z,)
where
{y‘. = Tgyy, z;=1forie K

y, =0, 2, =y fori e H.
Then, let «, denote the arc

(ul2ty(2)], ¢ < 12
a:c(t) == {

ul(Z — 20)y(2) + (2t — L)2(x)], ¢ = 1/2
where % is a given n-cube. Then, set
PEu(z) = a,

and the homomorphism
¢% : C(B)—CO(B)-
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is defined. To obtain ¢ set
¢*=2psgnHoh and ¢= 39"
Note that the definition of ¢ depends on n but is not displayed in the notation. Let
O=A—1gA°g;_--gA?---

denote the filtration of G(B) relative to the fibering (B, B, &). Then if  is an n-cube
in B, we make the following important observation

grued? =4~ 1<p<n

4.2. THE BASIC IDENTITY. Let u denote a fixed n-cube and ?, 9, H and K as above.
Suppose also that the indices in H and K are denoted by

H:i1<---<i”, K:j) <+ <j,
Then the following lemmas can be verified easily from the definitions.
Lzmma 1. Fork < p,
Roku= o' B u
and (—1)* sgn H = (—1) sgn H* where
H* ={i1,""»’:le—1’ik+1“‘l""a’;p—f 1}
Levma 2. For 1 < k< g,
A ix PRu = '1},,4-“1 rra
and (—1)*+* sgn H = (—1)% %1 sgn H* where H* = H U j,.
Lemma 3. If the g-skeleton of u is at a fived point b € B, then for1<k<p
Aprx Phu = ¢h* Au

and (—1)***sgn H = (—1)* sgn H* where H* = {i¥, - -+, iy} and i¥ =i, or
i, — 1 according as i, < j, or i, > j,.

Now, suppose that u is an n-cube whose r — 1 skeleton lies at b € B. Then for
any ¢ < r, the following basic identity I, » 18 valid,

(Iup) s a‘Pu - (Pau = Sa(u) + Ra(u) +0 zlsﬂ—a—l Pu — zisn.—a—l (pj ou
where

Bo(w) = 2571 Zu (— 1) sgn H [ ¢ % u — 29 g% %u]
By(uw) = 5oy Spr (—1) 4 sgn H (2,00 u — gt ]
where in the expression B («), H* and j, have the following meaning: If H = {i, <
Tt <y o} and K ={j,<---<j,} is its complement, H* — (i, i)

where iy =1, or iy =4, — 1 according as < Jg OF 1, > jp. jp 18, of course,
already indicated as an element of XK.
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The proof of this identity is immediate by induction on ¢, making use of the pre-
vious lemmas. I, immediately implies _
Lemma. If the v — 1 skeleton of a singular n-cube u in B lies at b € B then
Opu — @ou € A™
and :
Opu — @du = R, (u) modulo A™r1,

5. Application of the basic map to fibre spaces

5.1. THE INDUOED MAP y. Let (&, B, p) denote a fibre space, Barcwise connected,
b € B a fixed base point and p—1(b) = F the fibre over b. The homomorphism

@ : C(B)~C(B)
of the preceding section induces a homomorphism -
p: C(B) ® O(F)—> C(E)

as follows. Let u denote a p-cube in B, v a q—cubebin F. For (z, y) e I?+e, x € I?,
y €1 set

Ya(u ® v)(z, y) = Afu(y), ghu())(1) |
where 1 < 4 < p and H is a subset of 5 indices from {I,---, P} as in the previous
section and A is any lifting function for (£, B, p). Then set

V'=2gpv¥a =L,y
‘We note that .
v:0,(B) 8 O F)~>C,, (E)

depends on p and g but they will not be displayed in the notation.
Now, let
0=A—lgA0g ...gAPg,...

denote the filtration of C(E) as in §2.4. Then, we note that
VO (B)®CF)> 4" 1<i<p.

5.2. Tue ENTITY I,. The basic identity I ¢ implies easily a corresponding
identity for 9 which we state as the

FUNDAMENTAL LEMMA. If u is a p-cube in B whose r — 1 skeleton lies at a fized
point b € B, then

(I,) Op(u ® v) — pd(u ® v) = R (u ® v) modulo 4?1
where v is a singular cube in F, B (u ® v) € A*" and
Ry(u ®v) = 5oy Sp(—D> " sgn HIZ . vB " @ v) — 937 (AL u @ v)]

where H ranges over subsels of {1', - -+, p) which contain n — r elements.
Asin §4.2, H* and jj have the following meaning. Let K denote the complement
of a given H. We write the elements of K in increasing order h<---<j,,thus
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determining j,. If H = {iy,---,4,_}, H*={},+++,i}_} where if =1, or
it =1, — 1 according as j, > ¢, or j, < i,
5.3. THE MAIN RESULT. Now, in the chain complex C,(B) ® O(F) introduce the

boundary operator
0plb @ f) = (—1)*b ® Of, beCyB), [feO(F).
Furthermore, y induces homomorphisms
C,(B) ® C(F)— A?[A* L,
Since B is arcwise connected, we apply the Fundamental Lemma for » = 1 and see
that
. Yo Op = Oy,

and hence y, induces homomorphisms
pr: Cy(B) ® Ho(F)— H,, (A}, A>1) = EP1,

Now, let » denote a p 4 ¢ cube in E such that dim,u < p. As in Serre [3], Bu will
denote the p-cube in B, Fu the g-cube in F given by

Bu(xy, "+, x,) =p u(xy, -, T, yl, **, ¥,) for any choice of (y,,- -, y,).

Fu@y, -, 2) =u(0, - +,0, 2, , %)
Next, define ,

0: 47— C(B) ® C(F)
by setting
O(w) = Bu ® Fu

for u a generator of A?. Then 6 induces
8y : A?/A>1—>C,(B) ® CO(F).
It is easy to see that 8,0, = 6,0 and hence 0, induces
0,1 H,, (A7, A7) = EP—» C (B) ® H(F).

THEOREM 1y, and 6, form a chain equivalence and hence , and 0, are isomorphisms
onto,

ProoF. The proof is given in the Appendix, §l.

Now let us assume that for the fibre space (¥, B, p), Bis r — 1 connected with
7 > 1. We may then assume that the singular chains of F are generated by singular
cubes whose extended » — 1 skeletons lie in F, and that the singular chains of B
are generated by singular cubes whose extended r — 1 skeletons lie at the
fixed base point 5. As a matter of interest, the case r = 1 which gives the
Leray-Serre result is given in the Appendix, §2. Define

0,(B) @ H(F)—C,_,(B) ® H(F)

by
Ogu ® h = (0u) @ h.
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Then, applying the Fundamental Lemma, it is easy to see that the following
diagram commutes
C(B) @ H(F )11—> E,
0| |a
C(B)® H(F)—> E,
) _ Y1
and, recalling that H(E,) = E,,,, ¢, induces an isomorphism

v : H(B, H(F))— E,
which is a special case of the Leray-Serre result. Now, again applying the Funda-
mental Lemma, we see, step by step, that v, induces isomorphisms
y;: H(B, H(F))— E,
for 2 < 1 < r and the composition maps |
d;*y,: HB, HF))— E,— E,

are 0 for 2< i< r— 1, and hence d;=0for 2< i< r—1 (in case r > 2)
Next, we investigate the structure of the differential operator d,. It should be
remarked, that 0, : B, — C(B) ® H(F) also induces, step by step, isomorphisms

6,:E,—»HB,HF) 2<i<r
Consider, the composition
v r d" 61‘
H(B, H(F)) L E,—> E,—> H(B, H(F)).

Take a homology class h € H (B, H (F)) and let z denote a representative cycle

of h such that z = 3, ; Pagts ® 05, with p;, integers, u, p-cells in B, v, ; g-cells in
Fand 5 5 B4, Y;,518 & cycle in F for each 4, representing a homology class in ¥ which
we denote by A,. Then, employing the Fundamental Lemma, d,y,(k) € Ep-netr-l
is determined entii-ely by ‘
Zi,j pyB(u; —v;;) = R, (2).
In order to determine the structure of 6,d,y, (k) we look at the image of R,(u ® v)
under § : A" — C,__ (B) ® C(F)where u and » are as in the Fundamental Lemma
§5.2. Let H denote a subset of p — r indices from {1, - - -, p} and K be its comple-
ment. Then fz = A%u represents an element of (B, b), and fg maps the extended
r — 1 skeleton of I into 4. Following §2.6 let : .

faxley, -, @) = fglez, -, w2y, 2, Tplis * 7 T T,_y)-
Letting e : I"— b denote the natural representative of 0 € m,(B, b), set
far="rax+e

where the addition oceurs in the r*® coordinate. Then, the following lemma. is easy
to verify directly from definitions.



