.2

[FAC

International Federation of Automatic Control

DISTRIBUTED COMPUTER
CONTROL SYSTEMS 1994

A Postprint volume from the IFAC Workshop
Toledo, Spain, 28-30 September 1994

Edited by
J. A. DE LA PUENTE and M. G. RODD

PERGAMON

USA

JAPAN

Elsevier Science Lid, The Bwlg\(g!'fi_, thgford Lane, Kidlington, Oxford, OXS 1GB, UK
Elsevier Science Inc., 660 White Plains Road, Tarrytown, New York 10591-5153, USA

Elsevier Science Japan, Tsunashima Building Annex, 3-20-12 Yushima, Bunkyo-ku, Tokyo 113, Japan

Copyright © 1995 IFAC

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means: electronic, electrostatic, magnetic tape, mechanical,
photocapying, recording or otherwise, without permission in writing from the copyright holders.

First edition 1995

Library of Congress Cataloging in Publication Data

A catalogue record for this book is available from the Library of Congress

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-08-042237 3

This volume was reproduced by means of the photo-offset process using the manuscripts supplied by the
authors of the different papers. The manuscripts have been typed using different typewriters and
typefaces. The lay-out, figures and tables of some papers did not agree completely with the standard
requirements: consequently the reproduction does not display complete uniformity. To ensure rapid
publication this discrepancy could not be changed: nor could the English be checked completely.
Therefore, the readers are asked to excuse any deficiencies of this publication which may be due to the
above mentioned reasons.

The Editors

Printed in Great Britain

IFAC WORKSHOP ON DISTRIBUTED COMPUTER
CONTROL SYSTEMS 1994

Sponsored by
International Federation of Automatic Control (IFAC)
- Technical Committee on Distributed Computer Control Systems

Organized by
Comité Espafiol de Automiética, CEA-IFAC

International Programme Committee

M.G. Rodd (UK) (Chairman) A. Mok (USA)

A. Bondavalli (I) L. Motus (ESTONIA)
A. Bumns (UK) S. Narita (J)

A. Crespo (E) D. Powell (F)

F. Cristian (USA) R. Puigjaner (E)

F. DePaoli (I) K. Ramamrithan (USA)
M.A. Inamoto (J) R. Reyero (E)

H. Kopetz (A) G. Suski (USA)

W.H. Kwon (ROK) T. Williams (USA)
G.LeLann (F) G. Zhao (SGP)

I. MacLeod (ZA) - ‘

National Organizing Committee

J.A. de la Puente (Chairman and General Coordinator)
A. Alonso

A. Alvarez

J.A. Cerrada

S. Domido

A. Jiménez

FOREWORD

The 1994 IFAC Workshop on Distributed Computer Control Systems meets for the 12th time
in the historic city of Toledo. The IFAC DCCS series has gained wide recognition for its high
quality level, which makes it a difficult challenge for the organisers of each new meeting. We
expect that both academics and industrial practitioners will find new insight in the field and
learn from each others’ view.

One of the most important issues in the development of distributed computer control systems is
being able to build software and hardware which is both reliable and time deterministic. This is
an area where control engineering and computer science naturally meet, and we also expect
this workshop to provide a space for cross fertilization between both engineering fields.

I would like to thank the International Programme Committee and its Chairman, Professor
Michael Rodd, for their enthusiastic work in setting up an excellent technical programme. The
continuous support of the IFAC Technical Committee on Distributed Computer Control Sys-
tems, chaired by Professor Ian MacLeod, has been determinant in ensuring the continuity of

the DCCS series and making this meeting possible.

Finally, let me thank the support provided by our sponsors, which have provided work and
financial aid for the technical and social programme.

Juan A. de la Puente
Universidad Politécnica de Madrid

CONTENTS

REAL-TIME COMMUNICATION ARCHITECTURES

Integration of Temporal Mechanisms in Communication Protocols for Time-Critical Distributed Systems
Z. MAMMERI, P. LORENZ

Communication Architectures for Distributed Computer Contro] Systems
W. DIETERLE, H.-D. KOCHS, E. DITTMAR

A Communication Infrastructure for a Fault Tolerant Distributed Real-Time System
H. KOPETZ

A Priority-Based Protocol for the 802.3 Network
M. LI

TEMPORAL PROPERTIES OF COMMUNICATION SYSTEMS

A High-Precision Time Processor for Distributed Real-Time Systems
M. WANNEMACHER, W.A. HALANG

Calculating Controller Area Network (CAN) Message Response Times
K. TINDELL, A. BURNS, A. WELLINGS

Distributed Synchronous Processes for Control Systems
M.A. PERALD], C. ANDRE, H. BOUFAIED

Automated Design of Distributed Computer Control Systems with Predictable Timing Behaviour
H. THIELEN

ARCHITECTURES FOR DCCS

An Architecture for Real-Time Distributed Al-Based Control Systems
J.D. HOLT, M.G. RODD

Distributed Control Architecture for Mobile Robot Operation in Uncertain Environments
A. MANDOW, J. GOMEZ-DE-GABRIEL, V.F. MUNOZ, A. OLLERO

Distributed Real-Time Database Approach for Distributed Computer Control Systems
D. BUZULOIU, I. DUMITRESCU, D. POPESCU

OPEN AND HETEROGENEOQOUS DCCS

Open Systems in Distributed Industrial Control - A Critical Review
T. RAHKONEN

13

19

29

35

41

47

53

59

65

Distributed Control of Assembly Cells Based on Virtual Mmufacm;ing Device Model !
G. NAGY, G. HAIDEGGER

An Heterogeneous and Distributed Architecture Based on a Reflective Memory Interconmection Network 77
JL. LERIDA, D. DEL VAL, J.E. CONDE, A. VINA

Heterogeneous Architectures for Real-Time Control: Design Tools and Scheduling Issues 83
M.J. BAXTER, M.O. TOKHI, P.]. FLEMING

SPECIFICATION AND DESIGN METHODS FOR DCCS

A Target Code Model for Incremental Prototyping . 89
N. ZAKHAMA, J.A. DE LA PUENTE
An Object-Oriented Design Method for Distributed Process Control Systems 95
G. HASSAPIS, A. MOSCHOPOULOS, D. THEOS
Graphic Modelisation and Simulation Design Technique Including Temporal Operators 101
G. NOWAK, E. NIEL, A. JUTARD
Comparing RTL and FNLOG- Timing Properties in Real-Time Systems 107
A. SOWMYA

SYSTEM ISSUES
Distributed Contro] Using a Serial Communication Link 113

E. DUMMERMUTH

Real Time Distributed Control Applied to Process Supervision by SFC Algorithms 119
R. FERREIRO GARCIA

Distributed Control Systems Debugging Based on Global Predicates Detection 125
J. VILA, F. BUENDIA

Replication Issues in the Map/MMS Communication Environment 133
S. MESSINA, P. RAJA '

PERFORMANCE ISSUES

System Monitoring for a Real Time Local Area Network 141
J.C. CAMPELQ, F. RODRIGUEZ, 1.J. SERRANO, M. SANCHEZ, R. ORS

Analysis on the User’s Response Time for Mini-Map Systems 147
H.S. PARK, C. LEE, W.H. KWON

Analysis of Temporal Properties of Data Flow Control Systems 153
Gy. CSERTAN, C. BERNADESCHI, A. BONDAVALLI, L. SIMONCINI

A Simulator for Performance Estimation of Open Distributed Computer Control Systems 159
S. HORIIKE, Y. OKAZAKI, H. SOEDA

APPLICATIONS

Structuring in the Design of Real Time DCCS Application to an Industrial Transfer System 165
J.J. SCHWARZ, M. MIQUEL, J. SKUBICH, J.F. PETIT

vi

Implementation of a New Quality Fiamess Sensor in the Distributed Computer Control System of
Rolling Mills 171
D.F. GARCIA, M. GARCIA, M.A. DEL RIO, J.L. DIAZ, F. SUAREZ

A Case Tool for Modeling and Simulating Distributed Control Systems Based on MMS 177
R. MARIN, J.L. TRILLO, J. GARRIDO

Author Index 183

vii

Copyright © IFAC Distributed Computer Control Systems,
Toledo, Spain, 1994

INTEGRATION OF TEMPORAL MECHANISMS IN COMMUNICATION
PROTOCOLS FOR TIME-CRITICAL DISTRIBUTED SYSTEMS

Z.MAMMERI" and P. LORENZ**

Centre de Recherche en Informatique de Nancy (CNRS URA 262)
* ENSAM, 3 rue de la Rochefoucauld, 51006, Chilons sur marne, France
** ENSEM, 2 Avenue la forét de haye 54516, Vandoeuvre-les-Nancy, France

Abstract. To deal with faults and dynamic changes in real-time systems, the message and task
scheduling is insufficient because there is no scheduling algorithm which can guarantee the respect of
all the timing constraints (TCs) under these requirements. So, mechanisms are necessary to tolerate
the violation of some TCs. This paper presents an approach to integrate temporal mechanisms in the
communication protocols to qualify, with a temporal point of view, data exchanged between
distributed processes. These mechanisms enable to know if TCs are met or not. We are especially
interested in the producer/consumers communication model.

Key words. Real-time computer systems, Computer communication, Real-time communication,
“Timing constraints, Temporal mechanisms, Temporal status, Time window, Temporal data validity.

1. INTRODUCTION AND RELATED WORK

Distributed real-time systems (DRTS) are vital for a
wide range of applications such as the control and
command applications in navigation systems,
nuclear power plants, vehicle factories, petroleum
plants, ... A real-time system (RTS) is defined as
one in which the correctness of its results depends
not only on logical computation carried out but also
on the time at which the results are delivered (Bums
and wellings 1990, Panzieri 1993, Rajkumar 1991).
A time-critical system is a real-time system in which
the non-respect of timing constraints may lead to
production loss, installation deterioration, ...

To meet timing constraints (TCs) in distributed time-
critical systems, task scheduling and time-critical
management of communication must be combined,
Scheduling of time-critical tasks consists of
elaborating a processor allocation strategy to
guarantee the respect of the TCs. A lot of scheduling
algorithms for time-critical systems has been
developed (for further details, see Cheng et al 1989,
Liu and Layland 1973, Mok 1983, Sprunt et al 1989,
Tindel et al 1992, Tripathi and Nirkhe 1991, Xu and
Pamas 1991). The proposed algorithms deal with
task scheduling with a few consideration for task
distribution constraints (i.e., they especially deal
with local scheduling). There is no algorithm
enabling a global scheduling of tasks with TCs
among a distributed system seen as a whole.

An adequate scheduling of tasks is necessary to meet
DRTS requirements, but it is not sufficient. In fact, it
is necessary to activate the tasks according to their

TCs, but it is also necessary to supply the tasks with
data at the right moments (i.e., the data used by tasks
must be transmitted and received at the adequate
times). As, the communications delays are generally
non-deterministic, the data arriving at a user entity
can become out of use because the temporal data
validity is limited by the application nature.

Time-critical (or real-time) communication, defined
as communication with explicit iming requirements,
is important for networks which interconnect
equipment in DRTSs (ISO 1991, Sha 1992). The
desirable properties of a network that supports real-
time communication include predictable operation
and a high degree of schedulability. Timely delivery
of messages is essential to the completion of real-
time tasks before their deadlines (Zheng and Shin
1992). Like that, task scheduling and
communication scheduling are complementary to
meet TCs in DRTSs (ISO 1991, Rodd and El-rowairi
1994; Sha et al 1992, Zheng and Shin 1992).

In the beginning of the 80's, the ISO has defined a
basic reference model for interconnection of open
systems. To reach markets, any network must, as
possible, conform to this model. With the emergence
of applications requiring not only a reliable delivery
of messages but also the respect of TCs, it is
necessary to rethink the OSI model. Nowadays, it
becomes more and more obvious that the OSI model
is a general model that does not integrate time to
ensure the temporal validity of the data exchanged
between remote tasks. So, it is important to build
new mechanisms that take into account the
requirements of the communication in the time-

critical systems (ISO 1991, Rodd and El-rowairi
1994; Sajkowski 1987).

A time-critical application is composed of several

tasks (or application processes) exchanging data
with respect to some given TCs. Mechanisms are
introduced enabling to know if a variable value is
produced, transmitted, received, and consumed
according to application timing requirements.
Communication between entitics may be achieved
according to several models: producer/consumers,
client/server, client/multiservers, ... models. This
paper especially deals with the basic communication
model, i.e., the producer/consumers one.

In a time-critical context, once elaborated the TCs
must be met at run-time. In practice, if one wants o0
deal with systems faults and dynamic system
changes that are unknown a priori, the messages and
tasks scheduling is insufficient because there is no
scheduling algorithm which can guarrantee the
respect of all the TCs under these requirements. It is
why approximate problem solving techniques are
used. So, on one hand, one is unable to know that
the TCs will be met (because of the variety of the
constraints that the task/message schedulers must
take into account: TCs, resource constraints, ...) and
he wants to tolerate the non-resepct of some TCs.
The idea developed in this paper is the definition of
some mechanisms to qualify with a temporal view
point the data exchanged between tasks. Message
scheduling depends mostly on the protocols of the
network, and especially on the MAC (medium
access control) protocol. The mechanisms proposed
in this paper are general and they are not designed
for a particular network.

The rest of the paper is structured as follows. In
section 2, the concepts of time window and temporal
data validity are presented. Section 3 presents the
temporal statuses useful to qualify exchanged data.
Section 4 presents the rules to respect when
elaborating time windows to schedule operations
related to time-critical communications. Some
conclusions appear in section 5.

2. TIME WINDOWS AND DATA VALIDITY
2.1 Time window

In the literature, several models and methods, such
as temporal logic, interval logic, and hierarchical
multi-state machines, have been proposed for
specifying, reasoning about, verifying and validating
TCs in real-time systems. As each operation in a
communication relationship must occur in a given
period of time (but not at a fixed instant) to respect
some TCs, the concept of time window is used in
this paper to deal with TCs in time-critical
communication,

A time window (TW) is defined by its start and
finish times. A start (or a finish) instant may be
static or dynamic, and the length of a TW may be
constant or variable. The association of a TW to an

operation means that this operation must be
activated after the TW start time and it must be
terminated before the TW finish time.

2.2 Temporal data validity

In a DRTS, variable values are produced by entities
called producers and they are used (or consumed) by
entities called consumers. The producers and
consumers are connected by means of
communication network(s). A variable value is
produced at instant Tp; it is transmitted to the
consumer at instant Tt; it is received by the
consumer at Tr. At the instant Tc (Tp < Tt < Tr <
Tc), the consumer wants to use the received
variable. An important question arises: the available
value is it still valid at instant Tc ?

To understand the notion of data validity, let us
consider, as an example, a system controlling the
leve! of a liquid in a cistern. The liquid level is
measured every second. The measurements are sent
to a control task and to a statistical study task. When
the liquid level exceeds a given threshold, the gate
must be closed within five seconds. Here, the
information "threshold exceeding” is communicated
to the task which closes the gate and to the task
which stores threshold exceeding instants in a
statistical file. The first task must receive and
process the information within five seconds after the
detection of the threshold exceeding. The second
task has only to store the instants of threshold
exceeding with no TCs on the storing operation.

The previous example shows the importance of
temporal validity, to ensure correctness of actions in
DRTSs. Also, the example shows that the life time
of a data may be variable according to each
consumer. In. DRTSs, is it is necessary to clarify the
temporal data validity for each variable with regard
to the production and consumption time windows to
ensure the data consumption coherence. A produced
variable value is valid during a particular period of
time with regard to each consumer. This period is
the temporal validity of the variable value. A
variable value is valid in a given time window called
Temporal Validity Window. The consumer must
terminate its consumption operation before the end
of the temporal validity window. In consequence,
emission, receipt and consumption operations must
be scheduled by taking into account the end of the
temporal validity windows.

3. TEMPORAL QUALIFICATION OF DATA
3.1 Time windows for time-critical communication

The communication between a producer and a
consumer is achieved according to several steps:

» production of a variable value,

» the variable value passes through the stack of the
communication layers, from the application layer up
1o the physical layer, at the producer station,

« the variable value passes through the stack of the

communication layers, from the physical layer up to
the application layer, at the consumer station,
« consumption of the variable value.

In a time-critical context, production and
consumption operations but also all the
commaunication layers must respect certain TCs to
guarrantee that the end-to-end (i.e.,
producer/consumer) cooperation will meet the whole
application TCs. Each one of the previous steps
necessitates a local processing and a message
transfer achieved by the lower layer. According to
the architecture of the used network, the
communication stack may be composed of three
layers (1, 2 and 7), ..., or seven layers.

To facilitate the analysis of temporal validity of
variable values, and to have a good knowledge about
the TCs, we associate a time window with each step;
this time window will specify the time interval
during which the step must be started and finished.
Like that, we have to specify the following TWs:

» a TW for the production step (this TW is called
production TW),

* a TW for each communication layer (from the
application layer up to data Link layer (or exactly up
to the MAC (i.e., medium access control) sublayer)
for the producer station (this TW is called
layer i _emissionTW,i=1,....3, MAC) -

» a TW for each communication layer (from the
MAC sublayer up to the application layer) for the
consumer station (this TW is called layer_i_receipt
TW,i=1,...,3,MAC),

« a TW for the consumption step (this TW is called
consumption TW).

Notice that no TW is associated with the physical
layer because it is very diffuclt and useless to
elaborate a temporal staws for each transmitted or
received bit.

One end-to-end TW, or one end-to-end delay, is
often (or even, usually) associated with a
communication relationship (i.e., one TW is
associated with all the steps of a producer/consumer
communication). We propose the use of several
TWs for the following reasons:

+ to determine a correct and effective end-to-end
delay, it is necessary to know the precise delay
associated with each step,

* As the proposed mechanisms are usefull to
enhance the understanding of the abnormalies and
faults causes, the separation of the TWs enables to
locate the exact cause of non-respect of TCs.

» To be capable of meeting the CTs, each
communication layer must inquire about the CTs it
must respect, otherwise how could it know the
urgency or the priority of the messagses it processes.
» The present works on time-critical networks, such
as FIP (UTE 90) and Profibus (Menden 1992), and
on transport layer (Danthine et al 1993) and XTP
(eXpress Transfer Protocol) propose the introduction
of temporal mechanisms at all the layers of a time-
critical communication architecture (ISO 91), in
order to control more effecively the respect of TCs.

« Finally, at a given communication step, with an

end-to-end delay strategy, a message is sent i,f_,i,‘,s 7

end-to-end delay is not over even though the
minimal delay necessary to achieve its final
destination is greater than its present time validity.
With a TW for each step, a message that will miss
its its deadline is known earlier and the message
scheduler, at each step, "previliges” messages that
have a high probability to reach destination with
respect to TCs. Also, this is a means of removing
late messages from the network. In consequence, the
message scheduling is optimized.

3.2 Temporal statuses

A temporal status is associate to each step of the
communication. This status enables to know if the
TCs assigned to the corresponding step (or time
window) are satisfied, or not. The production siatus
is elaborated by the production station of the
variable; it enables to know if the variable value has
been produced with respect to TCs. The
consumption status indicates, to the consumer, the
validity of the variable value available to
consumption; it allows to know if the variable value
available at the consumption station is valid for
consumption, or not. It is elaborated by all the
consumption stations. The Layer-<i>-emission
status indicates if the variable value has been
processed, at the communication layer i of the
producer station, with respect to the fixed TCs
constraints (<i> =7, ..., MAC). The Layer-<i>-
receipt status indicates if the variable value has been
processed, at the communication layer i of the
consummer station, with respect to the fixed TCs.

The temporal status associated with each
communication step is elaborated by an entity
controlling the respect of the TCs, this entity is
called TCCE (Timing Constraint Control Entity).
The sequencing of a time-critical communication is
organized as follows:

1) Production of a variable value VV.

2) Once the production operation is over, the
production TCCE tests if the production TCs have
been respected, and elaborates the production status
(PS). The message to send is {VV, PS}.

3) The message {VV.PS} is available at
communication entity of the production station. At
each communication layer (from 7 to MAC), the TCs
associated with the layer are controled and a
temporal status is elaborated. The message actually
transmitted on the medium is TrM = {VV, PS§, L7ES,
... L3ES, LMACES} (where LiES means the
temporal status elaborated by the layer i, and E
means emission)

4) When the message TrM reaches the destination
station, temporal statuses associated with receipt
steps are elaborated. So, the message available at
the consumer level is ReM = {TrM, L7RS, ... L3RS,
LMACRS} (R means receipt).

5) At the instant where the consumer is ready to
consume the available message, the consumption
TCCE tests if the consumer has respected, or not,
the consumption TCs, and elaborates the
consumption status (CS).

The consumer does not receive only a variable value
but a message containing the produced variable
value and several temporal statuses. If all the
temporal statuses are set to True, then the variable
value is valid for consumption, otherwise it is
invalid, and the consumer uses the temporal statuses
to know why the value is invalid. When no variable
value is received, the consumption TCCE sets VV to
a special value to inform the consumer.

At the implementation level, a bit is associated with
each temporal status. In consequence, a temporal
status control byte (i.e., a byte containing the
temporal statuses elaborated by the producer station)
is integrated in any variable value message. So it is
obvious that the throughput of the network is
affected by the presence of the temporal statuses.

4. COMMUNICATION-ORIENTED
OPERATIONS SCHEDULING

Variable values may be exchanged periodically (for
data sampling, ...) or aperiodically (for file transfer,
alarm notification, ...) between producers and
consumers. For a periodical communication, the
start and the finish times of TWs are mostly
determined by using the period of the
communication. For an aperiodical communication,
the start time is often unknown a priori, but once the
start time is determined, it is possible to determine
the finish time (this time corresponds to the
communication deadline). In some real-time
contexts, tasks are executed at known times (for
example, "the factory siren must be activated at
12:00 a.m"). So, the start times of communication
associated to such tasks are known a priori.

A variable may be consumed by one or several
consumers. Once a variable value has been
produced, each consumer must consume this value
before a given amount of time (i.e., while the
variable value is valid for the consumer). The
produced value is communicated to each consumer
with regard to the temporal validity of the value for
this consumer (there is a temporal validity window
for each consumer). The communication entity of
the production station uses the temporal validity
associated to each consumer, for each variable, to
schedule the transmission of messages containing
variable values. In this section, we analyze how to
elaborate the TWs associated with a critical-time
communication. Rules to respect when scheduling
communication-related operations are introduced.
The following notations are used in this section.

Notations:

¢ : a consumer identifier v : avariable identifier

VV : Variable Value TW : Time Window

TVW : Temporal Validity Window

i, k : numbers of produced VV

Cn : number of consumers of the variable v

PP(v) : Production Period of the variable v.

PC(v,c) : Period of Consumption of v for the consumer ¢
VT(v.ic) : Start time of TVW for i value of vfor c
Vd(v.ic) : Finish time of the TVW for ith value of v for ¢
VL(v.i.c) : Length of the TVW of i¥h v's value for ¢

PT(v, i) : Start time of the production TW of #8 v's value

PY{v, i) : Finish time of the production TW of #* v's value

XT(v, i, ¢) : Start time of the TW of the operation <X> of
ith v's value for c,
X = E7 (Emission at layer 7), ..., EMAC : (Emission at
layer MAC), RMAC : (Receipt at layer MAC), ..., R7 :
(Receipt at layer 7), C : (Consumption)

XU, i, c) : Finish time of TW of the operation <X> of &P
v's value for ¢

P@(v,i) : Finish time of the production of it v's value,

RI1@ T(v,i,c) : Instant of the arrival of the message
containing the ih v's value at the physical layer of ¢

R7@(v,i,c) : Instant of the arrival of the message
containing the #Rv's value at the application layer of ¢

EV@ T(v,i) : instant of occurrence of the event leading the
production of the P value of an aperiodic variable v,

Dprd(v) : execution delay to produce a value of v

Demi(v) : maximal delay, for a v's message, to pass
through the layers 7 to 1 at the producer station

Drep(v,c) : maximal delay, for a v's message, to pass
through the layers 1 10 7 at the consumer c-

Dpr(v,c) : maximal delay of propagation of a message
containing a value of the variable v

Dpr(v,c) : processing delay of the received VV by ¢

10 : the instant of the application start.

4.1 Rules for elaboration of time windows

The lengths of TWs and their sequencing, in time,
depend on whether the exchange of the variable is
periodic or aperiodic.

Periodic exchange of a variable

A periodic exchange of variable means a situation in
which an entity produces periodically variable
values that are consumed by other entities. Each
consumer may have its own consumption period.
First, the production period must be less or equal to
the lowest consumption period, otherwise, some
consumers are led to consume several times the
same variable value. So, the rule R1 must be
respected when defining the periods of producers
and consumers.

R1 : PP(v) S min {PC(v,gj), j=1....,Cn}

Second, a consumer with a period less than the
production period is not concerned by all the
produced values. In consequence, the producer does
not necessarily send the produced values to all the
consumers: each consumer is supplied with variable
values according to its consumption speed. One may
notice that if all the produced variable values are
transmitted to all consumers, the network traffic may
be increased uselessly (if broadcasting is not
available) when some consumption periods are
greater than the production one.

There are two basic possibilities to ensure the
sequencing of time windows for periodic variables:
by using static TWSs or by using dynamic TWs.

* Static TWs: the start and the finish of a TW are
fixed times. Then, a production occurring earlier or
later in the production TW has no effect on the start
time of the emission TW. In the same way, in the

consumer station, receiving the variable value earlier
or later in the receipt TW has no effect on the start
time of the consumption of the received value.

» Dynamic TWs: two cases must be considered:

- For the producer, the production is the first
operation in a producer/consumer relationship; its
start and finish times depend only on the production
period. In consequence, production TW is always
fixed. Once the production is terminated, the
variable value is prepared to send. So the emission
TW start time is linked to the end of the variable
value production.

- For the consumer, the receipt TW begins when the
first digit arrives at the consumer station. The finish
time of the receipt TW must be static to detect if a
value is received or not before a given deadline (i.e.,
to detect the loss and the late emission of messages).
The start time of the consumption TW is not fixed
and when the variable value is received it is possible
to consume this value. In this case, the consumption
TW start is a time immediately after the end of the
variable value receipt at application layer.

A dynamic TW may have a fixed or a variable
length. With variable lengths, one may use the time
saved in a step to extend the duration of the next
step; in consequence the TCs of some operations
may be relaxed. TCs relaxation is often useful for
operation scheduling.

When static TWs are used, the rules R2 must be
respected when defining the TWs.

R2.1.1: PT(v,i+1) = PT(v,i) + PP(v)
R2.1.2: Pl(v,i+1) =Pl(v,)) + PP(v)
R2.2.1: XT(v,k+1,6) = XT(v.kc) + PC(v,c)
R2.2.2: X(vk+1,0) = XI{v,kc) + PC(v.c)

If (n)*PP(v) £ PC(v,c) € (n+1)*PP(v), then n
variable values are produced in every consumption
period, and among these VV only one is sent to the
consumer. When dynamic TWs are used, the rules
R3 must be respected when defining TWs.

R3.1.1:
R3.1.2;
R3.2.1:
R3.2.2:

PT(v,i+1) = PT(v,i) + PP(v)
Pl(v.i+1) = PL(v,i) + PP(v)
E7T(v.k.c) 2 P@L(v.k)
EMAC(v.k,c) <10 +(k)*PC(v,c) - D1
D1 = Dprg(v,c) + Drcp(v,c)+ Dpre(v,c))
RMACT(vk,c) = R1@T(v.k,c)
R74(v.k+1,c) s R74(v k.c) + PC(v,c)
CT(v.kc) > Ri@T(v.k.c)
Cl(v,k,c) <10 + (k)*PC(v,c)

R3.3.1:
R3.3.2:
R3.4.1:
R3.4.2:

As previously mentioned, a produced variable value
has a specific life time for each consumer. Once a
variable value is produced, this variable value must
be sent, received and acted upon while it is valid.
The following rules (R4) express this constraint.
When the temporal validity window length is less
than the period of the consumer, the rules R4 are
more accurate than rules R3 to delimit the TWs.

R4.1: EMACL(v,ic) s Vi(v,,c)-D2

D2 = Dprg(v,c) + Drep(v,c)+ Dpre(v,c)
R4.2: R74(v,.c) < Vi(v,i.c)- Dprelv.c)
R4.3: Cl(v.i.c) s Vi(v.ic)

Aperiodic exchange of a variable

An aperiodic communication is issued when a
specific event occurs (for example, an alarm
notification). Once the event leading to the variable
exchange has been detected, a variable value is
produced, sent to all interested consumers, and
consumed with respect to the temporal validity
associated to each consumer. So, the start and the
finish times of all TWs are conditioned by the
instant of event detection and the variable temporal
validity duration associated to each consumer. As
the consumer cannot know the exact time of the
beginning of the temporal validity of an aperiodic
variable, and as it cannot know the exact duration
between the value production and the beginning of
its receipt, the consumer TCCEs can not adjust the
receipt and consumption TWs. This problem may be
solved by using the following mechanism: the
production station stamps the variable values with its
local real-time clock at end of the. value production.
By using the variable value: time-stamp, the
consumer computes the time remaining for validity
of the variable value, and it adjusts its TWSs.
Nevertheless, this solution requires that the real-time
clocks of the producer and the consumers must be
synchronized.

The rules RS must be respected when sequencing the
TWs for an aperiodic communication. The instant of
the production end of the variable value, noted
P@.(v, i), is integrated in the message containing
theith Vv,

R5.1.1: PT(v,i) 2 EV@T(v.)
R5.1.2: Pl(v,i) <EV@T(v,i) + A
A = min {(VL(v,i,c)) - Tj), j=1.....Cn}
Tj = Demi(v,cj)+Dprg(v.cj)+Drep(v,cj)+Dpre(v.¢j)
R5.2.1: E7T(v,i.c) 2 P@!(v,i)
R5.2.2: EMACL(v,i,c) < EV@T(v,i)+VL(v,i,c)-D3
D3 = Dprg(v,c) + Drcp(v,c) + Dpre(v,c)
R5.3.1 : RMACT(v,i.c) = R1@T(v.i.c)
R5.3.2: R7(v,i.c) s P@L(v, i}+VL(v,i,c)-Dpre({v,c)
R5.4.1: CT(v,i.c) 2 R7@.{v,i.c)
R5.4.2: Cl(v,i,c) < P@l(v,i) + VL(v,i,c)

4.2 Time-critical communication scheduling

The previous rules for determination of start and
finish times of each time window must be used as
inputs for the task schedulers in producer and
consumer stations. Also, according to each
application, the lengths of the temporal validity
windows, the periods (for periodic variables) must
be fixed and used as inputs of the tasks schedulers.
The elaboration of the finish times of TWs is based
on the knowledge one has about production,
emission, receipt and consumption delays. The
maximal values computed for these delays must be
estimated in such a way that the probability of
respect of TCs is as high as possible. To calculate

the different delays, it is nccessary to take into
account different types of constraints; especially the
services of the used networks. In fact, the delays are
very different according to the type of the used
network Ethemet, MAP or FIP (UTE 90), ...).

In order to define the TWs, the application designer
must specify:

« the production and consumption periods for
periodic variables,

* the events leading to aperiodic exchanges,

« the temporal validity of the variable values, for
each consumer,

« the delays necessary for emission and receipt that
are computed according to the characteristics of the
network(s) connecting the producers and consumers.

To activate and terminate the operations related to
time-critical communications, time-critical-oriented
scheduling algorithms must be used. The constraints
to taken into account by the schedulers are TCs and
precedence constraints (i.e., emission begins afier
the end of the production, ... and the consumption
begins after the end of the receipt). Time-critical
scheduling algorithms which may be used are those
presented in (Cheng et al 1989, Liu and Layland
1973, Mok 1983, Sprunt et al 1989, Tundcl ct al
1992, Tripathi 1991, Xu and Pamas 1991).

5. CONCLUSION

When a time-critical application is distributed, the
communication system enabling data exchange
between tasks must be chosen in such a way that
communication delays do not affect temporal
validity of exchanged data.

The managemcnt of time-critical communications
requires time window mechanisms to elaborate
temporal statuses, and real-time-oricnted algorithms
for scheduling operations related to production,
emission, receipt and consumption of messages.
This paper has presented some mechanisms (o
elaborate temporal statuses qualifying variable
values exchanged between distributed tasks
according to the producer/consumers model. The
proposed mechanisms represent a beginning for
potential extensions of the OSI model to take into
account the temporal aspects of communication in
time-critical distributed applications. For each OSI
layer, we advise the integration of previously
presented mechanisms.

It is recognized today that communication systems
which are to be used in time-critical distributed
systems must be designed with TCs always in mind
(Rodd 1994). It is diffuclt, even impossible, to
obtain a time-critical scheduling of messages over
present networks that are not designed for time-
critical systems, New networks must be invented.
We beleive that the mechanisms presented in this
paper will be integrated within the future real-time
communication systems.

Finally, we note that the temporal mechanisms
presented in this paper have been validated and
implemented in the FIP network (UTE 90). Further

work has to be carried on 10 deal with temporal data
validity in other communication models such as
client/server and client/multiserver models.

6. REFERENCES

Bums, A., and Wellings, A. (1990). Real-time systems and
their programming languages. International computer
series, Addison Wesley.

Cheng, C.C., Stankovic, J.A. and Ramamrithan, K.
(1989). Scheduling algorithms for hard real-time
systems, Real-time systems Newslester 3(2):1-24.

Danthine, A. et al. (1993). The OSI 95 Connection-mode
transport service - The enhanced Qos. In High
performance networking. (A. Danthine and A. Spaniol,
Ed.), pp. 235-252, Elsevier Sc. Pub. B.V. (North-
Holland).

1SO, (1991). Interim report of the TCCA Rapporteurs
group of ISO/TC 184/SC 5/WG2 on time-critical
Communications Architecture and System. ISO/TC
184/SC S/WG 2, Report N° 254, April 24.

Liu, C., and Layland, J. (1973). Scheduling algorithms for
multiprocessing in a hard real-time environment.
Journal of ACM, 2((1): 46-61.

Mendecn, R. (1992). Basic information on Profibus. Eds.
Klockner-Moeller Bonn.

Mok, A. (1983). Fundamental design problems of
distributed systems for the hard real-time environment.
PhD Thesis, MIT, May.

Panzieri. F., and Davoli. R. (1993). Real-time systems : a
tutorial. Performance evaluation of computer and
communication systems. LNCS (729): 435-462.

Rajkumar, R. (1991). Synchronization in real-time
systems, a priority inherence approach. Eds. Kluwer
academic publishers.

Rodd, M.G., (1994). Communications for rcal-time
industrial control: The design issues. In Real time
computing, (Eds. W. A. Halang and A. D. Stoyenko),
Springer Verlag, pp. 111-130

Rodd, M.G., and Al-rowaihi, S.F. (1994). Temporal
modelling of real-time communication protocols based
on a processor/channel approach. J. of Real-time
systems (6): 243-262.

Sajkowski, M. (1987). Protocol verification in the
presence of time. Protocol specification, testing and
verification, VI, Elsevier science publishers B.V, pp.
269-280

Sha, L., Sathaye, S.S., and Strosnider, J.K. (1992).
Scheduling real-time communication on dual-link
networks. Proceedings IEEE Real-time systems sympo.
Phoenix, Arizona, Dec., pp. 188-197.

Sprunt, B., Sha, L., and Lehoczky, J.-P. (1989). Aperiodic
Task Scheduling for Hard Real-Time Systems. J. of
Real-Time Systems (1), pp. 27-60.

Tindell, K., Burns, A., and Wellings, A. (1992).
Allocating Hard Recal-Time Tasks: An NP-Hard
Problem Made Easy. J. of Real-Time Systems. (4):
145-165.

Tripathi, S.K., and Nirkhe, V. (1991). Pre-scheduling for
synchronization in hard real-times systems. Operating
systems of the 90s and beyond. LNCS(653): 102-108.

UTE, (1990). FIP: Application layer and data link layer.
Union Technique de I'Electricité. Paris.

Xu, J., and Pamas, D.L. (1991). On satisfying timing
constraints in hard-real-time systems. Proc. of the
ACM SIGSOFT91 Conf. on Soft. for Critical Systems.
New Orleans, December, pp. 132-146.

Zheng, Q., and Shin, K.G. (1992). Fault-tolcrant real-time
communication in distributed computing systems.
22nd Intern. Sympo. on Fault-tolerant Computing.
Boston. October, pp. 86-93.

Copyright © IFAC Distributed Computer Control Systems,
Toledo, Spain, 1994

COMMUNICATION ARCHITECTURES FOR DISTRIBUTED
COMPUTER CONTROL SYSTEMS

W. DIETERLE*, H.-D. KOCHS* and E. DITTMAR**

*University of Duisburg, Department of Computer Science, Lotharstr. 1, 47048 Duisburg, Germany
** ABB Netzleittechnik Gmbh, Network Control and Protection, Wallstadter Str. 53-59, 68259 Laden-
burg, Germany

Abstract. The use of distributed computer control systems (DCCS) demands high reliabi-
lity, sufficient real-time behaviour and increasingly economical systems. The last demand
requires the use of cheap standard components, whenever possible. The following article
discusses realization of DCCS with respect to these constraints. Problems due to conveatio-
nalmeofstmdardmdcommnmcanmprmocdsmdxsmbuwdomuolsystemsmgemm
and highly-reliable systems in particular are shown. Multicast communication concepts are
presented as solutions, using standardized protocols in a problem specific way. The presen-
ted concepts fulfill the necessity of using standard components as well as the specific
demands towards DCCS.

Keywords. Control Systems; Local Area Netwarks; Computer Communication; Distributed

Databases; Communication Protocol.

1. INTRODUCTION

High demands are placed on distributed computer
control systems (DCCS), used in energy distribution,
production or process engineering, whereby the costs
aspect is more and more dominating. Costs minimi-

zation makes use of cheap. standardized components
and design of simple, modular system concepts man-
datory. In the following specific architectural features
for system communication, type of data storage and
fault-tolerance in DCCS are derived from the system
requirements described. Existing standard communi-
cation protocols, e.g. TCP/IP, UDP/IP or ISO/OSI are
not intended for support of these features, however,
lack of appropriate standard protocols in the UNIX
environment requires use of the existing ones. Pro-
blems with conventional use of standard communi-
cation protocols are shown and two multicast
concepts are presented and evaluated. They are based
on standardized communication protocols, but use
them in a problem-specific manner. The multicast
concepts are very simple (in comparison with exi-
sting solutions) and have a very low message over-
head, nearby the minimal message cost which is
determined by simplified border conditions. Experi-
mental results show that the timing characteristics of
the first solution (ring multicast) are acceptable for
small and medium size DCCS.

The second solution (datagram multicast) is suitable
for large DCCS and systems with specific demands
for data transfer time and throughput.

2. BASIC ARCHITECTURE OF DCCS

Modem industrial computer control systems are desi-
gned as distributed systems (Fig. 1). The considered
systems consist of approx. 10-15 functional compu-
ters, to which the functional modules described
below can be randomly associated. Functional com-
puters are connected via Local Area Networks
(LAN), typically Ethernet. According to high reliabi-
lity demands computers with important functions are
redundantly structured.

The functional scope of such systems incorporates
data acquisition, basic processing of process data
(SCADA), process visualization (MMI) as well as
additional functional modules (complex secondary
functions) depending on the concrete application pur-
pose.

Due to distribution and redundancy of functions
complex data flows are present in the system. Infor-
mation flow from the process to the MMI dominates
(only this type of data flow is shown in Fig. 1). A
technological description of process and control

A "'? 7 ool
Secondary Functions

i Data Acquisition

Process

§#% Functional Computer
Redundant Computer
< Functional Module
B8 Data Model

Fig. 1: System Architecture of Distributed Computer
Control Systems

system is held in static data models. Process state is
kept in dynamic data models (100000-200000 pro-
cess variables). MMI images are beld in further data
models, they comprise a static component, the image
structure, and a dynamic section, the actual process
state. In the following we are only concerned with
dynamic data models, which are to be continuously
actualized.

3. REQUIREMENTS AND EFFECTS ON
SYSTEM ARCHITECTURE

3.1 System Requirements

The requirements placed on distributed computer
control systems can be divided into low costs, real-
time behaviour and reliability/fault tolerance. More

and more the system costs and follow-up costs are
proving to be the most important factors.

Low costs demand the use of standard components as
much as possible, openness of the systems (in the
sense of simple expandability and testability), modu-
larity, simple system concepts as well as indepen-
dence from a particular manufacturer, The use of
standards concerns hardware (Workstation, PC), ope-
rating system (UNIX), visualization (X-Windows,
OSF/MOTIF) as well as the system communication
(LAN: Ethernet, protocol: TCP/IP, UDP/IP, 1SO/
OSI). Components available on the market are inte-
grated to a system and expanded by non-present fea-
tures at the module interfaces (e.g. fault-tolerance). In
the following we are mainly concerned with the last
mentioned aspect, the communication system.

The required real-time behaviour is characterized by
shart. _response times, high system throughput.
random access to all process data within very short
time, permanent actualization of data models and
information output at the MMI interface, good
system dynamics even under heavy load (e.g. process
failure), fast failure recognition and reconfiguration
in case of failure of redundant components.

Due to centralization effects in the direction of the
higher control levels and consequences according to
component failures, high reliability by means of
structural redundancy and fault tolerance is required
for industrial computer control systems. Computers
with important functions and for very high reliability
demands also the LAN bus have to be redundant
(Kochs et al., 1993). Redundancy of the computers is
realized according to the leader/follower principle,
the computers exhibit fail-silent behaviour (Powell,
1991; Kopetz, 1989).

3.2 Archi I Necessit

The requirements to a high degree determine the con-
ceptual features of a system, especially system com-
munication and type of data storage. Figure 2 shows
the requirements and their effects on system
architecture. Data acquisition and secondary func-
tions are omitted for the sake of simplicity.

Modern DCCS are based on UNIX workstations, thus
it would be desirable to use Client/Server communi-
cation, typical for UNIX environments (Fig. 2a). Yet
“pure” client-server architectures with centralized
data storage are not appropriate for DCCS. Con-
tinuous actualization of dynamic data models would
require cyclical processing of the whole process state.
This is not possible - not even with presently avail-
able very powerful computer and communication
technology. Event-driven information transfer is
necessary: Producer/Consumer communication. The
data models of MMI images are kept in each MMI
computer: decentralization of dynamic data models.
Furthermore, expanded MMI functionalities (e.g.
Zooming, Scrolling) require that the decentralized
data models comprise the total process state (Fig. 2b).

The most important criterion for distributed systems
with decentralized data bases is data consistency. In
case of fault-free operation data consistency is trivial
to be ensured. Yet it becomes a problem when failu-
res occur. Process description takes place by means
of process alterations (events) on the basis of a consi-
stent original state of each data model. Disruptions
lead to faulty and inconsistent data models (a process
signal once lost is lost forever), This demands solu-
tions for retrieval of information by transfer of com-
plete data sets or to avoid inconsistencies by means of
sophisticated approaches.

Time-costly retrieval of information in case of com-
puter or LAN-bus failure is not practical when using
modern MMI images, comprising the total process
state. This means “seamless” reconfiguration is
necessary t0 maintain data consistency, i.e. imme-
diate reconfiguration without loss, duplication or
ordering impairment of information (Fig. 2¢).

3.3 Existing Solui

The problem faced is the consistent update of distri-
buted databases in the presence of failures (interact-

Costs: Standards (UNIX, TCP/IP)

Real-time Behaviour,
MMI-Functionality

i sation

MMI image

Fig. 2: Architectural Features of DCCS

Centralized Data Storage

“ Client/Server Communication

: Decentralized Data Storage

¢ Producer/Consumer Commu-
i nication

i Leader/Follower-Synchroni-

i “Seamless“ Reconfiguration

MMI image, comprising total process state

ive consistency, e.g. Alford et al., 1985). Consistency
is expensive in terms of time and messages. Existing
commercial solutions are based on centralized
structures and are thus not appropriate in the appli-
cation area considered. There exist a number of theo-
retical/experimental solutions for consistency in
distributed systems in the presence of failures, which
are generally based on so-called agreement protocols.
These concepts can be classified synchronous and
asynchronous, Synchronous solutions (Kopetz, 1989;
Christian, 1990) are based on synchronized clocks.
They require space redundancy, i.e. message trans-
mission over several channels,
which increases computer load
(context switches). Thus, they are
not appropriate for the systems
considered. Existing asynchro-
nous solutions (Birman, 1987;
Ozalp, 1990) are targeted to
systems beyond the scope of
DCCS and thus are too costly.
Communication solutions for
DCCS are shown in Powell
(1991), however, the concepts are
complex and expensive with
regard to communication and
processing load and do not meet
the targeted system philosophy of
expanding existing market com-
poneats by non-present features.

None of the existing concepts fits
as an appropriate communication
architecture for the DCCS consi-
dered. As a cansequence, several
communication concepts were
developed and shall be discussed
in the following.

4. CONVENTIONAL USE
OF STANDARDIZED
PROTOCOLS

Solutions have been developed
with particular emphasis on
simple (and thus cheap) concepts,
modular system architecture
with use of standardized proto-
cols and comparatively low com-
munication overhead. A specific
problem when using UNIX ope-
rating systems is that all existing
standardized protocols in the
UNIX environment (TCP/IP,
UDP/IP, ISO/OS]) are dedicated
to Client/Server communication
with centralized data storage, i.e.
an appropriate use of the proto-

cols to implement Producer/Consumer communi-
cation is required. A first solution would be the

conventional use of standardized communication pro- -

tocols. Conventional use of standardized communi-
cation protocols means implementation of
connections between distributed processes according
to an application-specific structure (point-to-point-
structure). Conventional use of standardized commu-
nication protocols evokes a number of problems to be
discussed in the following. The statements apply to
the TCP/IP protocol (Comer, 1991) and in similar
fashion to ISO/OSI protocois.

Conventional use of standardized communication
protocols demands a high level of linking between
the computers for data transfer and failure recogni-
tion. The latter requires fast and consistent recogni-
tion of component failures by all the participants (e.g.
Christian, 1988). Failure recognition takes place by
means of connection timeout.

Transfer of single process events would be expensive
(bus load, context switches), a combined time-driven/
amount-driven transfer of process data is required.
Connection-oriented protocols support unicast com-
munication only, i.e. messages have to be sent several
times, this is even worse if the sender is redundantly
configured: each connection has to be synchronized
separately between Leader and Follower. These
aspects lead to high work load for LAN and comput-
ers, in particular for the redundantly configured
SCADA computer as the logical centre of the system.

In distributed systems exists the problem of causal
and total order of transferred and processed data, e.g.
one has to prevent original data being processed after
data derived from the original data. This demands
sophisticated measures to ensure causal and/or total
order if protocols are conventionally used (Lamport,
1978; Powell, 1991).

The system structure is parametered or even pro-
grammed into the communication software (seman-
tics: “send message fo“, “receive message from“).
Alterations or extensions of the system structure are
complex and expensive. Besides (de-)coupling the
system via the LAN bus on the hardware side it is
also necessary to detach the computers with their
communication protocols on the software side. Fail-
ure of components leads to undesired communication
feedback due to protocol dependencies. This feed-
back must be controlled by the sender and the receiv-
er software. Receiver acknowledgement of the TCP/
IP protocol cannot be evaluated by sender applicati-
ons. This means the temporal sequence of data trans-
fer cannot be exactly controlled and thus leads to
possible inconsistencies in case of failure, which can
only be remedied via additional mechanisms.

10

TCP/IP parametering for retransmission and con-
nection timeout due to component failure with the
aim of reducing fault latency is limited and not accor-
ding to the standard (Comer, 1993).

Further problems concern the necessity of additional
buffering of sender data at the application level for
the prevention of data loss in case of connection
timeout.

5. MULTICAST CONCEPTS FOR DCCS

Due to the problems with conventional use of stan-
dardized protocols two multicast concepts, based on
the UDP/IP protocol have been developed. The con-
cepts use standardized protocols in a problem-speci-
fic manner. UDP/IP constitutes the unconfirmed, non-
connected pendant to TCP/IP. The following objec-
tives were aimed at during development of these con-
cepts:

- Realization of simple concepts.

- Use of standardized communication protocols
(whereby preventing the mentioned problems).

- Minimization of dependencies or feedback by the
protocols. -
- Effective utilization of LAN bus and computers.

- Equal distribution of computer workload due to
communication on all components.

- Simple and efficient mechanisms for failure recog-
nition and reconfiguration of computers and bus.

- Simple monitoring and test interfaces.

The procedure described first (ring multicast) is based
on ring-configured information transfer within the
system, whereby a logical multicast is realized. The
second concept uses the physical multicast mecha-
nism of the datagram-oriented UDP/IP protocol
(datagram muiticast).

5.1 Ring Mult

In case of the ring multicast concept (Fig. 3) data
exchange takes place via a circulating token of
variable length. Stations willing to send wait for the
token (1) and enter their data upon receipt of token
(2). During the following token circulation (3) the
data pass all (potential) receivers. Each station hol-
ding the token selects information and adds its own
data to the token (4). After a full token cycle data are
removed from the token by the sender (5), new data
are entered.

Besides the advantages of the concept - discussed
later - the protocol could have one possible draw-
back, when used in large DCCS, comprising a high
number of components (more than 10 computers).

