


Personal Pascal

Compiled Pascal for the
IBM Personal Computere

David E. Cortesi
George W. Cherry

A Reston Computer Group Book
Reston Publishing Co., Inc.

A Prentice-Hall Company
Reston, Virginia



Library of Congress Cataloging in Publication Ditha
Cortesi, David E.
Personal Pascal.

Includes index.

1. IBM Personal Computer—Programming. 2. PASCAL
(Computer program language) 1. Cherry, George William. II. Title
QA76.8.12594C66 1983 001.64'2 83-8686
ISBN 0-8359-5523-0
ISBN 0-8359-5522-2 (pbk.)

IBM® and the IBM Personal Computer® are registered
trademarks of International Business Machines.

© 1984 by Reston Publishing Company, Inc.
A Prentice-Hall Company
Reston, Virginia 22090

All rights reserved. No part of this book may be
reproduced, in any way or by any means, without permission
in writing from the publisher.

10 9 8 7 6 5 4 3 2 1

Printed in the United States of America



Preface

This book is a text on the use of Pascal in general, and compiled Pascal
on the IBM Personal Computer in particular. Its aim is to teach effective
use of Pascal as a compiled programming language, when that use will
take place in an environment composed of an IBM Personal Computer,
using either the IBM Pascal compiler or the Digital Research Pascal/MT + 86
compiler.

Beginning programmers encounter several kinds of difficulties:

® Getting started
® Finishing
® Avoiding syntactical errors

A helpful textbook assists its reader in these areas. This book helps the
reader to get started by demonstrating the top-down strategy of design.
It helps the reader complete a design by illustrating stepwise refinement.
And it helps the reader avoid common syntactic errors by giving careful
descriptions and illustrations of Pascal syntax. Clarity of design and port-
ability of code are emphasized throughout.

The first two chapters introduce the novice programmer to simple
program statements and to simple, complete programs. The third chapter
explains in detail how the compilers are used to translate programs. From
that point forward, the reader should be able to compile and run each
example program in the text. The reader who already knows another
programming language and wants to pick up Pascal can skip chapter 1
entirely and skim chapter 2. Those who know their Personal Computer’s
operating system well will not have to linger in chapter 3. ‘

Chapters 4-13 cover the entire (standard) Pascal language, including
textfiles (chapter 5), records (chapter 10), pointers and dynamic variables
(chapter 11), files (chapter 12), and sets (chapter 13). The central themes
in these chapters are, first, to provide a careful, thorough explication of



X

Preface

the syntax of Pascal and, second, to demonstrate the use of the language
through many example programs and program fragments. The language’s
syntax is also summarized for reference in Appendix A, using a modified
(and more readable) form of BNF recommended by Ledgard.

The last two chapters are devoted to describing the specific quirks,
advantages, and nonstandard features of the two compilers. Appendix B
summarizes the use of the ASCII code with the IBM Monochrome Display
and the IBM printer. Appendix C summarizes standard input/output; Ap-
pendix D, standard procedures; and Appendix E, the IBM system of char-
acter widths.

This book is based, in large part, on Pascal Programming Structures
by George Cherry (Reston, 1981). It is to George Cherry that the book
owes its depth and its pedagogical virtues; any defects in the present
version are entirely my own. | am grateful to Cherry for laying such a
solid foundation for the work, and to Reston Publishing Company for
giving me the opportunity to officiate at this wedding of an outstanding
text with a computer of equal quality.



Contents

CHAPTER 1

CHAPTER 2

CHAPTER 3

Preface ix
INTRODUCTION TO PROGRAMMING 1

Objects and Actions 1

Data 1

Instructing a Computer 2

A Preview of Pascal 4

The Need for Care and Precision 8
The Form of a Program 9
Exercises 14

THE STRUCTURE OF PASCAL PROGRAMS 17

First Example 17

Second Example 22

Third Example 24

The Pattern of a Pascal Program 27

The Layout and Typestyle of Pascal Programs 30
Exercises 31

USING YOUR COMPILER 33

The Compilation Process 33
Diskette Organization 38
Using IBM Pascal 40

Using Pascal MT+86 47
Exercises 53



iv

Contents

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

OPERATIONS ON SIMPLE VARIABLES 55

How Variables are Realized 55

Declaring Variables 55

Boolean: The Data Type of True and False 59
Char: The Data Type of Printable Characters 65
Scalar Types Defined by the Programmer 72
Integer: The Type of Whole Numbers 76

The Subrange Data Type 81

Real: The Type of Decimal Numbers 82
Exercises 87

INTRODUCTION TO INPUT AND OUTPUT 91

Input/Output Methods 91

Character /0 93

The Standard Input and Output Files 96
Numerical Input: The read Procedure 97

Input of Numeric Data: The readin Procedure 102
Input of Character Data 104

Input of Mixed Numeric and Character Data 106
Output of Data: write and writeln 108

Exercises 112

ORGANIZING PROGRAM ACTIONS 115

Categories of Structure 115
Concatenating Program Actions: begin and end 116
Repetition Controlled by a Count: for 117
Repetition Controlled by a Pre-condition: while 122
Repetition Controlled by a Post-condition:

repeat . . . until 125
Choosing Between Two Alternatives: if 127
Selecting From Many Alternatives: else . . . if 130
Selecting One From Many: case . . . end 131
The Unstructured Branch: goto 134
Exercises 137

DATA STRUCTURES: THE ARRAY 141

A First Look at Arrays 141
Defining Array Types 146



Contents

CHAPTER 8

CHAPTER 9

CHAPTER 10

Searching an Array 149

Sorting Arrays 155

Multidimensional Arrays 156

Standard Strings: Arrays of Characters 160
Applying Strings: Text Editing and Formatting 165
Exercises 171

FUNCTIONS 175

The Use of Functions 176

Designing with Functions 178

The Scope of Names 183

Recursive Functions 185

Boolean Functions 188

Extending Pascal with New Subprograms 190
Exercises 193

PROCEDURES 195

The Form of a Procedure 195

A Real Example of Hierarchical Structure 199
Value Parameters and Variable Parameters 202
Using Parameters 205

Procedural and Functional Parameters 207
Recursive Procedures 209

Subprogram Directives 214

Block Structure and the Scope of Identifiers 216
Tips on Writing Subprograms 220

Exercises 221

DATA STRUCTURES: THE RECORD 225

The Form of a Record 225

Designing with Records 229

The with Statement 232

Variant Records 235

A Program to Create a Line Index 241
Omitting the Tag Field 250

Exercises 253



Contents

CHAPTER 11 DYNAMICALLY ALLOCATED DATA 255

The Need for Dynamic Structures 255
The Dynamic Data Facility 256

Linked Lists 261

The Stack: As an Array 265

The Stack: As a Linked List 267

The Queue Structure 272

The Binary Search Tree 278

The Use of Dynamic Storage 290
Exercises 293

CHAPTER 12 DATA STRUCTURES: THE FILE 297

The Sequence 297

Pascal Files 299

Creating a File 301

Reading a File 303

Copying and Modifying Files 305
Merging and Sorting Files 310
Exercises 319

CHAPTER 13 DATA STRUCTURES: THE SET 323

Sets in Pascal 324

Using Sets 326

An Example: Lexical Analysis 328
Set Arithmetic 330

Set Subprograms 331

Limitations of the Set Type 333
Exercises 333

CHAPTER 14 THE IBM PASCAL COMPILER 335

Syntax and Semantics 335
Declaration of Data 339
Input and Output 343
Modular Programs 346



Contents

vii

CHAPTER 15

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

THE PASCAL/MT + 86 COMPILER 359

Syntax and Semantics 359
Declaration of Data 361
Input and Output 364
Modular Programs 366

FORMAL DESCRIPTION OF PASCAL 375

The Need for a Definition 375
The Notation of Definitions 375
Scope of the Definition 378
The Language Definition 379

CHARACTER DATA VALUES 387

Standard Character Data 387
The ASCII Character Set 387
The IBM Display 391
The IBM Printer 396

SUMMARY OF STANDARD INPUT/OUTPUT 403

Definitions 403

General Output 404
General Input 404
Textfiles 405

Textfile Output 406
Textfile Input 407
Textfile Programming 408

SUMMARY OF STANDARD PROCEDURES 411

Standard Procedures 411
Standard Functions 412



viii Contents

APPENDIX E IBM 9-UNIT SYSTEM OF CHARACTER WIDTHS 415

Index 417

Index of Pascal Terms 419



1 Introduction to
Programming

OBJECTS AND ACTIONS

A computer program is a sequence of instructions to a computer pro-
cessor, telling it to perform useful actions on significant objects. Early in
the history of computers the objects were almost always numbers, and
the actions on them were almost always the operations of arithmetic. This
is no longer the case. For example, there are computer programs that
help us to create, edit, and typeset English text. In such programs the
objects are letters, punctuation marks, words, and paragraphs; the useful
actions include insertion, deletion, pagination, and printing.

The significant objects can also be lines, curves, and other elements
of figures; examples of the useful actions on such objects include posi-
tion, rotate, change color, move, erase, and print. Objects and actions
like these are used in computer graphics and in programs for computer-
aided drafting and design.

Another example of significant objects is that of records that are
arranged in lists—an insurance company’s list of records of its policy-
holders, for instance. The useful actions here are manipulations on the
data in the records—to print the names of all policyholders who had more
than three claims in the last five years; to print reminder notices to all
policyholders whose premiums are thirty days overdue; or to send in-
formation about automobile insurance to all the policyholders who have
life insurance and no automobile insurance.

We call the significant objects on which a program is to work, data.
The first ingredient of a well-written program is a thorough and careful

DATA



2

Introduction to Programming

description of the types of data on which the program is to act. One
important advantage of the Pascal programming language is that it lets
us describe the objects of a program as clearly as the actions to be done
on them.

Constants

There are two kinds of data in a computer program. Data whose
values cannot change during the execution of the program are called
constants. For example, the number of ounces in a quart, 32, would be
a constant in any reasonable program.

Variables

Data whose values can change are called variables. Variables are the
focus of most of a program’s actions. At the insurance company, a pro-
gram might well contain a variable named PolicyHolder. The value of
PolicyHolder will probably not be constant. Rather, it will contain in-
formation about the one particular policyholder the program is acting on
at any particular moment. When the program moves on to consider a
different policyholder, it will arrange for information about that different
person to be associated with the name PolicyHolder.

The Type of Data

Every variable in a Pascal program has a distinct and unchanging
data type associated with it. A data type is a statement of what kind of
data a variable may contain. It determines what values the variable can
reasonably hold, what operations may validly be performed on the data,
and the form and arrangement of the data in computer storage. Defini-
tions of data types are a prominent feature of most Pascal programs. They
give the program’s author a tool for controlling the program’s shape, and
they give the program’s reader a firm grasp on the author’s intent.

INSTRUCTING A COMPUTER

Since computers don’t “think” the way we do (or at all), there is
always some compromise when we human beings try to communicate
with a computer. We would like to instruct the computer the way we
would talk to a human assistant, saying things like “Keep a record of the
hours, overtime, and bonuses of each employee and print out their pay-
checks each month,” or “Keep an inventory of all the new automobiles
we have in stock and tell me right now how many air-conditioned, manual
transmission, two-door hatchbacks we have,” or “Keep a record of the
sales by all salespeople and print out their names and sales-to-date in
descending order.” Unfortunately, we can’t do that.



Instructing a Computer

3

The Communication Gap

Despite the movies in which actors carry on colloquial dialogues
with their computers, you probably know that there’s a vast gulf between
what we would like to say to the computer and what the computer can
understand. The computer, after all, works only with strings of binary
digits (or “bits”) like 11010001, 00100101, 11100111, and so on. It has no
means of working with the consequential objects like PolicyHolder or
PageNumber that we use. The computer’s native actions are primitive
and elementary, unrelated in any way we can readily see to the problem-
solving actions that we want done. If we didn’t already know that com-
puters are useful, we might despair that they ever could be.

Programming Languages

We bridge this formidable gap with a programming language. A
computer programming language is a notation for describing the objects
we want to work with, and the actions that we want the computer pro-
cessor to perform on them. A programming language is a simple, rigidly
defined, formal notation that is easy to translate into the machine’s lan-
guage of binary numbers. Nevertheless, a good programming language
makes it easy for us to express our problem solutions; its notational forms
are well suited to the description of the kinds of objects and actions that
we want the computer to deal with.

In order to instruct a computer, we write a program in a program-
ming language, and store that program as a file in the machine’s file
medium—on a diskette, in the IBM Personal Computer. Then we run a
computer program called a compiler, which performs the translation of
our program into the computer’s internal language. The translated pro-
gram—a sequence of binary numbers—is also stored in a file, and it can
then be loaded into the machine and executed. We use the computer to
translate a language that we can use into one that it can use. Thus does
the computer help solve the communication problem which it created!

The process of translating from a programming language into a ma-
chine language is called compiling a program. It is a complex process,
even though programming languages are more simple and limited than
natural languages like English. A good compiler for the Pascal program-
ming language will do more than translate your program for you. It will
also check your program’s adherence to Pascal’s rules for data typing and
syntax, and make whatever checks it can of the program’s logical con-
sistency. A good compiler is the programmer’s best friend. The Pascal
compilers available for the IBM Personal Computer are both of good
quality.



A PREVIEW OF PASCAL

Computers and programs may seem to be at the outer edge of high
technology, but the ideas behind them are common and homely. The
recipe for a cake, the instructions for knitting a sweater, or the directions
for building a birdhouse all have a similar logical format. Consider the
following recipe:

BAKED ZITI (serves 4)

Ingredients:
1 (8-ounce) package ziti
2 cups Italian tomato sauce
1 cup shredded mozzarella cheese

Actions:

1. Cook ziti according to spaghetti recipe on page 343.

2. Prepare Italian tomato sauce according to recipe on page
186.

3. Combine ziti, tomato sauce, and 1/2 cup shredded cheese in
2-quart casserole.

4. Sprinkle remainder of cheese on top of casserole.

5. Heat casserole uncovered on full power for ten minutes or
until cheese is melted and sauce is bubbly.

The structure of this recipe has many parallels with a computer
program. Like the recipe, a Pascal program starts with a heading. Like the
recipe, a Pascal program will follow the heading with a list of its “ingre-
dients,” definitions of the objects on which it will operate.

Notice that the recipe refers to subrecipes on other pages of the
cookbook: the procedures for cooking the ziti and preparing the Italian
tomato sauce. The single instruction in action 2 in the main recipe stands
for many definitions and actions defined in the Italian tomato sauce pro-
cedure on page 186. Many cookbooks define a set of useful procedures,
functions, and subrecipes which the author invokes again and again.
Procedures for stuffing and trussing a bird might appear at the beginning
of the poultry section. Later in the cookbook, recipes for wild duck,
turkey, and partridge can invoke these predefined procedures. The au-
thor will give gravy and sauce subrecipes and then invoke them in main
recipes with shorthand phrases like “White Sauce IlI, page 285.” Pascal
offers two forms of subprogram (the procedure and the function) which
are analogous to these subrecipes. They serve the same purpose: they
make the main program more compact and more comprehensible.

A particularly useful kind of instruction in a recipe is one that makes
the actions of the cook contingent on the condition of the item under
preparation. In the ziti recipe, action 5 contains such an instruction: the
cook is to heat the casserole “until cheese is melted and sauce is bubbly.”



A Preview of Pascal 5

Other examples from a popular cookbook are: “simmer celery until tender”;
“beat the batter until it is smooth”; “whip the egg whites until they stand
in peaks.” Pascal has two kinds of instructions for controlling repetitive
actions. Borrowing the Pascal keywords, they are:

while "the batter is lumpy" do
"beat the batter. "

and

repeat
"simmer the celery"
until "the celery is tender. "

Assignment of Values

The above is pidgin Pascal. Here’s some real Pascal:

repeat
X :=X/2
until X <1

As you read that, remember that every trade and profession has special
jargon and symbols. Computing (and cookery!) is no exception. The
special symbol : = in the above statement is called the assignment op-
erator. The assignment operator instructs the computer in a two-stage
process:

® Evaluate the expression on the right-hand side; that is, find the
value of X divided by 2.

® Assign this value to the variable whose name appears on the left-
hand side.

How do you pronounce X : = X / 2? Programmers usually just say
“X equals X over two.” Of course, that sentence doesn’t make mathe-
matical sense; unless X is zero it cannot possibly be “equal” to itself
divided by 2. Another way to pronounce an assignment statement is to
say “X gets X over 2.” This emphasizes the real meaning of the Pascal
statement: the value of X/2 is to be computed, and that value is to be
stored in the variable named X. Pascal will always try to remind you that
the assignment operator is not the same as “=" or “equals”; that's pre-
cisely why it uses : = for the assignment operator. If you want to be
strictly correct (and sound rather pedantic!), you might say “replace the
old value of X with the old value of X divided by two.”



6

Introduction to Programming

Repeated Actions

Recall the whole statement we are talking about:

repeat
X:=X/2
until X <1

What does that repeat-until statement tell the computer to do? It says to
repeatedly halve the value contained in the variable X until the value is
less than one. If the initial value in X is 10, then the sequence of values
assigned to X is: 5.0, 2.5, 1.25, 0.625. The final value assigned to X by this
process is 0.625. With that assignment, X’s value becomes less than 1,
the condition of the repetition is satisfied, and the statement is complete.
The computer will cease the repetition, just as the cook will stop heating
the ziti when the cheese begins to bubble.

A simpler kind of repetition in a recipe is noncontingent: the action
is repeated for a fixed number of times or for a given duration. Cookbook
examples include “stir mixture ten times,” “blend for six minutes,” “rinse
in clear, cold water three times.” Pascal has a control structure analogous
to this. Here’s some pidgin Pascal translating two of the above instruc-
tions.

forJ := 1to10do
"stir the mixture";
forJ := 1to3do

"rinse in cold, clear water";

The words in bold letters are reserved words of the Pascal language, which
are always spelled and used in the same way. Here’s some real Pascal.

forJ := 1to4do
writeln('This isatest.');

This Pascal instruction writes the lines

This is a test.
This is a test.
This is a test.
This is a test.

on the display screen.

Conditional Actions

In both recipes and programs, there are times when an action should
be done or not done, depending on some condition. From a recipe book
we have “pare apples only if the skins are tough” and “if the caramel is



