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Preface

This book provides an introduction to advanced differential calculus
set against a background of linear algebra. It is designed as a first
or second year course for undergraduates who have some knowledge
of linear algebra and real analysis.

Traditionally linear algebra, vector analysis and calculus of
functions of several variables are taught as separate subjects. They
are, however, closely related. The underlying links are established by
defining the differentiability of a vector function at a point in its
domain in terms of the existence of an approximating linear transfor-
mation (differential). Many of the important classical results of
vector calculus are essentially concerned with the geometrical
properties of this differential and of its image and graph.

The Chain Rule for example, which plays an important part in the
development of the theory, is merely an expression of the fact that
the linear approximation to the composition of two functions is the
composition of their individual linear approximations. This theorem
enables us to study the relationship between different parametri-
zations of curves and surfaces.

In the study of vector functions from R™ to R" the cases m =1
and n = 1 warrant separate discussion. After a short introductory
chapter we proceed in Chapter 2 to consider functions from R to R"
(including the study of curves, differential geometry and dynamics).
Chapter 3 deals with functions from R™ to R (real-valued functions
of many variables, Taylor’s Theorem and applications). Finally, the
general theory of functions from R™ to R" is covered in Chapter 4. In
particular we prove the important inverse function and implicit
function theorems. Qur approach has the advantage of introducing
the concept of differentiability of vector functions in easy stages.
Certain theorems (the Chain Rule in particular) appear at a number
of points in progressively more general form.

We have tried to give readable yet rigorous proofs (often omitted
from introductory texts) of some of the important classical
theorems. The reader is recommended to attempt as many of
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the exercises as he can. Apart from the usual routine applications of
definitions and theorems, many of the exercises explain by way of
counter-example the significance of the hypotheses of the theorems.

We wish to express our thanks to Professor Alan Jeffrey editor of
Longman Mathematical Texts for inviting us to contribute to the
series. We are grateful to many colleagues and friends for fruitful
discussions concerning the text and in particular to the son of one of
the authors, Dr Martin Liebeck, who kindly read the whole manus-
cript and suggested many improvements. Finally, very special thanks
are due to Miss Christine Williams for typing the manuscript, and
for cheerfully retyping parts of it as the authors settled their
differences.

Keele P.R. Baxandall
March 1980 H. Liebeck
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1

Basic linear algebra and
analysis

1.1 Introduction

Basic analysis and linear algebra play a fundamental role in the
generalization of elementary calculus to the theory of vector-valued
functions. We shall assume familiarity with the analysis and linear
algebra usually found in a first course. Most of this background
material is summarized in this chapter.

A first course in calculus deals with real-valued functions of one
real variable. Such a function f : D = R— R is defined on a domain D
which is a subset of the real line R. The value that f takes at xeD is
a real number denoted by f(x)eR. For example, the rule

fx)=/(1-x%

can be taken to define a real-valued function f :D = R— R, where D
is the closed interval [—1,1] = {xeR|— 1< x < 1}.

Let R™ denote the set of all m-tuples of real numbers (x,, x,, . . ., X,,),
xR, i=1,...,m (In particular, R' = R) We shall be concerned
with the study of functions f : D = R™— R" defined on a subset D of
R™ and taking values in R". For example, the rule
LL1 S Gegs Xg, %3) = (/ (1 = x3),%,%,%3)
can be taken to define a function f :D < R®— R?, where D is the
subset of R? given by
1.1.2 D = {(x,, x,, x;)eR3 —1<x; <1}

The set R™ defined above is given the structure of a real vector
space by defining an addition of m-tuples
1.1.3 (g s X)) F O Y =X F V1o X+ V)
and a multiplication by scalars in R,

1.1.4 k(xy,. .., Xy =(kxy, ..., kx,), keR.
Viewed in this way, the rule 1.1.1 defines a funtion f on a subset D
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of the vector space R® such that the values that f takes lie in the
vector space R2.

With R™ interpreted as a vector space, the study of functions
f :D < R™—>R" is appropriately called vector calculus. (The alter-
native title ‘calculus of functions of several variables’ is sometimes
preferred when m > 1.) We observe that vector calculus includes the
case m=n=1 and so is a generalization of elementary calculus.

Exercise 1.1

1. Suggest a possible subset D = R? as the domain of a function
J :D = R*—>R? which is given by the rule
(@) flxy, xp x3) = (xl/xzs\/(l - x%));
(b) f(x,y,z)=(e""tan(xyz), x> + y* + z2);
©) f(xy, 2)=(1/x* - z%), In(xyz)).

Answers:

(a) {(xl, X325 x3)GR3|x2 5&07 x3e[_ 19 1]}5

(b) {(x,y, 2)eR3|x #0, xyz # (k + {)x, for integers k};
© {(x, 5, 2eR?|x# +z, xyz > 0}.

1.2 The vector space R™

In section 1.1 we pointed out that the set R™ of all m-tuples
(X15+ .05 Xy), x;€R, i=1,..., m, can be regarded as a vector space
over R if we impose the rules 1.1.3, 1.1.4 of addition and scalar
multiplication. We shall often denote a vector of R™ by a single letter
in bold-face, thus: x =(x,,..., x,,). In R? and R? the familiar
notation r = (x, y) and r =(x, y, z) is useful.

Consider the vectors in R™

e, =(1,0,...,0),e,=(0,1,...,0),...,e,=(0,0,...,1),

where e; has 1 in the ith place and 0 elsewhere. The set {e,...,e,} is
clearly a basis of the vector space R™, since any x = (X0 x,)ER™
has the unique expression x = x,e, + - + x,e,, as a linear com-
bination of the e;s. In view of its simple form we call the set
{e;,. .., e,} the standard (or natural) basis of R™. No other bases of
R™ are used in this book.

The vector spaces R' = R, R? and R are conveniently pictured as
a number line, as a plane and as three-dimensional space. For
example, we picture R? by choosing an ordered pair of perpendicular
axes and a unit of length, and associating the vector x = (x4, x,)eR?
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with the point in the plane whose coordinates relative to the axes are
(x4, x,) in the usual way.

An important alternative way of picturing the vector x = (x,, x,)
in the plane is by an arrow joining the origin (0, 0) to the point
labelled (x,, x,). Both ways of picturing vectors will frequently be
used — sometimes in the same diagram. The arrow representation is
particularly important in physical applications, for example when we
wish to picture velocities, accelerations or forces.

In the arrow representation, the rule 1.1.3 of vector addition is the
well known parallelogram law of vector addition. See Fig. 1.1(i). The
arrows joining O to P and Q to R are identical in all respects except
for their position in the plane. We therefore agree to picture
X =(X;, X,) not only by the arrow OP but also by an arrow joining
(1, ya) to (xy +yy, X, + y,), where y,, y, are arbitrarily chosen real
numbers.

Ar A}
R (x1+y),x9+y3)

Q(y1.52)

(i) (ii)
Fig. 1.1

Vector subtraction is illustrated in Fig. 1.1(ii). We have, by defi-
nition, y —x =y + (—x), where —x=(—x,;, — x,).

Considerations similar to the above apply to a pictorial repre-
sentation of R? relative to three mutually perpendicular axes.

1.2.1 Definition. Given vectors X =(xy,..., X, )and Y=(y;,- .-, V)
in R™, the dot product (or scalar product) of x and y is defined to be
the real number

XYy=X1y; + + XY

The dot product has the following important properties
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1.2.2 Symmetry: X-y=y-X, X, yeR™
1.2.3 Linearity: (kx + ly).-z=k(x-z)+ l(y-z),

X, y, ZzeR™ k, [eR
1.24 Positivity: x.x >0, forall x#0,xeR"

1.2.5 Definition. The norm or length of xeR" is the non-negative real
number ||x| = O such that

Ix)2=x-x=x2+...+x2

1.2.6 Example. If a=(2, 1), then |ja]|>=22+12=5 and |a| =\/5_
Note that ||x|| =0 if and only if x=0.

1.2.7 Example. It follows from Definition 1.2.5 that for xeR", keR,
kx| = |k |x|. For example, | —2x| =2]x].
The following theorem will be used extensively in this book.

1.2.8 Theorem. The Cauchy—Schwarz inequality. For any vectors
X, yeR"™ -

129 [x-yl < x|l lIyll,

with equality if and only if the vectors X, y are linearly dependent.

Proof. [i] If y=0, then x and y are linearly dependent, and 1.2.9 is
an equality, both sides being zero.

[ii] If y# 0 and x and y are linearly dependent, then there exists
keR such that x = ky. In this case 1.2.9 is an equality, both sides
being equal to |k |y >.

[iii] The remaining case is that x and y are linearly independent.
Then, for any keR, x + ky # 0 and, by the properties 1.2.2-1.2.4 of
the dot product,

0 < |x — kyll? = (x + ky)-{x + ky)
= [|x || + 2k(x-y) + k> [yll>.

With k= —(x-y)/|lyl|?, a simple calculation results in 1.2.9 as a
strict inequality.

The Cauchy-Schwarz inequality is often stated in the form

m 2 m m
1.2.10 (Z xiyi> < Z x7 Z yi
i=1 i=1

i=1
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This follows by squaring 1.2.9 and applying the definitions of dot
product and norm.

b

1.2.11 Theorem. The Triangle Inequality. For any vectors x,y in R™
Ix +yil < x| + iyl
Proof
1.2.12 Ix+yI? =(x+y)-(x+y)= [x]> + 2x-y + |y|?
< x| + 2ix-yl + llyl?
< xU?+20x) Iyl +ilyl* by (1.2.9)
= (IIxf + fyly*
Taking square roots on both sides, we obtain the Triangle

Inequality.

A picture for the cases R? and R® shows why Theorem 1.2.11 is
called the Triangle Inequality, for it is related to the property of
triangles that the sum of the lengths {|x| and |y| of two sides of a
triangle is not smaller than the length }|x + y)| of the third side. (See
Fig. 1.1))

1.2.13 Corollary. [i] For any x and y in R™
1.2.14 x| =yl lx =yl < Ix] + iyl

[ii] For any n vectors a,, ..., a,eR™ and scalars x,, . .., x,€R,
1.2.15 [xy25 + -+ X8, < Ixgllagll + -+ Ix,)lla,l.

[iii] For any x =(x,, ..., x,)eR™,

1.2.16 NGeys < ooy XM S x| 40 + I,
Proof. Exercise.
The well-known cosine rule applied to the triangle OPR of Fig. 1.1
gives
Ix +yli2 = lix? + Iyll> + 2lx| iyl cos 8,
where 0 is the angle between the non-zero vectors x and y,
Comparing this expression with 1.2.12 we obtain
X-y
f=——,
lIxH iyl
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In particular, the vector x is perpendicular (or orthogonal) to y if
and only if x.y =0. The following generalization applies to R™.

1.2.17 Definition. The vector xeR™ is orthogonal to the vector
yeR™ if and only if x.y=0.

Note that by the symmetry of the dot product, x is orthogonal to
y if and only if y is orthogonal to x.

1.2.18 Example. Equation of a plane in R3, A plane in R? is specified by a
point geR? in the plane and a non-zero vector neR? perpendicular (or
normal) to the plane.

The point r = (x, y, z)eR? lies in the plane if and only if r — q is ortho-
gonal to n, that is, if and only if

1.2.19 (r—qn=0.

Equation 1.2.19 is called the equation of the plane containing the point q
and having normal n.

For example, the equation of the plane containing q =(1, 1, 1) with
normal n=(2, 4, 6) is (x, y, 2)-(2, 4, 6) = (1, 1, 1)-(2, 4, 6), that is,

2x +4y + 6z=12.
The dot product is defined on vectors in R™, where m is arbitrary. The
following vector product is defined in R* only.
1.2.20 Definition. The vector product of b= (b,, b,, b;) and
e=(c,, cy, ¢3) in R? is the vector
bA ¢=(b,c3 — b3y, bsc; — by, biey —byey).

The formula for b A ¢ is conveniently obtained by expanding the
formal determinant

€ € &
1.2.21 bre=|b, b, by,
€, €, €

where e,, e, e, is the standard basis of R®. An alternative common
notation for the standard basis of R3is i =(1,0,0),j=(0, 1, 0),
k =1(0, 0, 1) and we shall use it occasionally.

We state the following standard results about the vector product
without proof.

1.2.22 Theorem. Let b and ¢ be vectors in R®. Then
[i]1 the vector b A ¢ is orthogonal to b and to ¢;
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[ii1 b and c are linearly dependent if and only if b Ac=0;

[iii] if'b and c are linearly independent then relative to a right-
handed coordinate system of R> the vectors b,e,b A ¢ from a right-
handed triple of vectors;

[iv] |ib Acl =b] [lc|sin ¢,
where ¢ is the angle between b and ¢. Thus ||b A ¢| measures the area of
the parallelogram with b and ¢ as adjacent sides.

Exercises 1.2

1. Prove Corollary 1.2.13. (Hint: to prove the right-hand inequality 1.2.14
apply Theorem 1.2.11 to x +(—y); for the left-hand inequality put
X—y=2z)

2. (a) Prove that the zero vector in R™ is orthogonal to every vector xeR™.
(b) Prove that if xeR™ is orthogonal to the vectors y,,..., Yy, in R™,
then x is orthogonal to every vector in the subspace of R” spanned by

Yoo ¥

3. Find the angle between (a) the vectors (1, — 1,0) and (— 4, 1, 1}; (b) the
vectors (I, — 1,0) and (4, — 1, — 1). Compare.

Answer: (a) cosf=—2; (b) cosp=2 O+¢=m

4. Prove that vectors x —y and x +y in R™ are orthogonal if and only if
x| = lly|l. Hlustrate this result in R2, and deduce that the diagonals of a
parallelogram intersect at right angles if and only if the parallelogram is a
rhombus.

5. Find the equation of the plane in R?
(a) containing the point (1, — 1, 1) and with normal n=(0, 1, 1);
(b) containing the points (1, 0, 1), (0, 1, 1) and (1, 1, 0).

Answers: (@) y+z=—2; b) x+y+z=2.

6. Prove from the definition of the vector product that
@ bAc=—cAb; (b) aAn(Ac)=(a-c)b—(a-bk.

7. Find a vector orthogonal to botha=(1, —1,2)and b=(2,0, 1).

Answer: any scalar multiple of the vector product a Ab=(—1, 3, 2).

1.3 Linear functions

1.3.1 Definition. A linear function L :R™— R" with domain R™ and
codomain R" is a rule that assigns to each xeR™ a unique vector L(x)eR"
such that for any x, yeR™ and k, leR,

1.3.2 Lkx + ly) = kL(x) + IL(y).



8 Basic linear algebra and analysis

It follows from 1.3.2 (by induction on r) that for any
a,...,acR"and k,,...,kEeR,

1.3.3 L(ka, + +ka)=k,L(a,) + - +k,L(a,).

1.3.4 Theorem. A linear function L :R™— R" is completely determined
by its effect on the standard basis e, . . ., e, of R™ Moreover, an arbitrary
choice of vectors L(e,),...,L(e,) in R" determines a linear function
L:R™"—R"

Proof. Choose L(e)eR" for each i=1,..., n. Then for
X=(xg...,Xx,)eR™,

L(x)=L(x,e; + "+ x,e,)
=x,L{e)+ - +x,L(e,), by (1.3.3).

Therefore the image under L of any xeR™ is known, and so L is
completely determined.

Note that a linear function has a vector space R™ as its domain,
whereas a non-linear function may be defined on a subset of R™. See, for
example, 1.1.1.

The image of a function L : R™— R" is defined as the set of all
image vectors:

1.3.5 im L = {L(x)eR"|xeR™}.

We say that L maps R™ onto R" if im L = R".
The kernel of L : R™— R" is defined as the set of all xeR™ that are
mapped by L to zero:

1.3.6 ker L = {xeR"™|L(x) = 0cR"}.

When L :R™— R" is linear, then im Lis a subspace of R”, ker L is a
subspace of R™, and the dimensions of im L and ker L are related by
the celebrated formula (which we leave unproved)

1.3.7 dimim L + dim ker L, = dim R™ = m.

1.3.8 Definition. A function f defined on a domain D is said to be
1-1 (one-to-one) on D if distinct elements of D have distinct images
under f; that is if, for any xeD, yeD, x +y implies that f(x) #+ f(y).

1.3.9 Theorem. A linear function L R"—>R" is 1-1 if and only if
ker L = {0}.
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Proof. Exercise.

We shall require (in section 4.6) the following definition and result
concerning a linear function L : R" — R" whose domain and co-
domain are the same space R".

1.3.10 Definition. An isomorphism on R" is a linear function
L :R"— R" mapping R" onto itself.

1.3.11 Theorem. A linear function L : R”— R" isan isomorphism on R" if
and only if Lis 1-1.

Proof. By Definition 1.3.10, L is an isomorphism on R" if and only
if im L = R". By 1.3.7 (applied to R" as domain) this is so if and only
if ker L = {0}. The theorem follows from Theorem 1.3.9.

We now outline the procedure for representing a linear function
L :R™—R" by a matrix. By Theorem 1.3.4, the function L is de-
termined by the images under L of the standard basis e,, ..., e, of
its domain R™ We must avoid confusing the standard bases of R™
and of R" so let us denote the standard basis of R” by e}, ..., e*
Suppose that foreachj=1,...,m,

L(ej)=a1je,1k+"'+a e¥ a,-jeR, i=1,...,n

njvn
Then for any X =(x,,.... X )JeR™ if L(X)=y=(y,,..., y)JeR"
1.3.12 Yyi= ) a;x; i=1....n
i=1

Formula 1.3.12 is conveniently written in matrix form

Y1 ayy o Qim|{*
1.3.13 o= : 2,
yn anl e anm xm
the evaluation being performed by the usual matrix multiplication.
We say that a vector z=(z,, ..., z,)eR? is represented relative to

the standard basis of R? by the column (g x 1 matrix)

Zy
[z] =
Z

and that the linear function L ; R"— R" discussed above is



