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PREFACE

My object in writing the following pages has been to provide
a book which will bridge the gap between differential geometry
of Euclidean space of three dimensions and the more advanced
work on differential geometry of generalised space. The sub-
ject is treated with the aid of the Tensor Calculus, which is
associated with the names of Ricci and Levi-Civita; and the
book provides an introduction both to this calculus and to
Riemannian geometry. I have endeavoured to keep the
analysis as simple as possible, and to emphasise the geometrical
aspect of the subject. The geometry of subspaces has been
considerably simplified by use of the generalised covariant
differentiation introduced by Mayer in 1930, and successfully
applied by other mathematicians. In the main I have adopted
the notation and methods of the Italian and Princeton schools;
and I have followed the example of Levi-Civita in using a
Clarendon symbol to denote a vector, which has both covariant

and contravariant components.
For the greater part of a century multidimensional differ-
ential geometry has been studied for its own intrinsic interest;
-and its importance has been emphasised in recent years by its
application to general theories of Relativity. I hope, therefore,
that this volume will be of service also to students who propose
to devote their attention to the mathematical aspect of
Relativity. A historical note has been written in order to add
to the interest of the book. This is placed at the end, rather
than at the beginning, as some knowledge of the subject is

necessary for its appreciation.

C. E. W.

PERTH, W. A,
March 1938
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Chapter 1
SOME PRELIMINARIES

1. Determinants. Summation convention.

Before entering on the subject of Differential Geometry we
may, with advantage, devote a little space to the mention of
certain results of algebra and analysis, which will be needed in
the following pages, explaining at the same time the notation
to be employed.

It is assumed that the reader is familiar with the elementary
properties of determinants. If the numbers ¢, j can take all
positive integral values from 1 to », the n? quantities a} may
be taken as elements of a determinant of order n, viz.

_— 1

a=| ab e} = @ |30 e (1)
ai af H
n n n
af af ... o

which is a homogeneous polynomial of the nth degree in the
elements. The superscript 4 of the symbol a denotes the row
to which the element belongs, and the subscript j indicates
the column. The determinant is also frequently denoted briefly
by | af|. If af = a, for all values of ¢ and j, the determinant is
symmetric; while if a} = —af it is skew-symmetric.

Let A% denote the cofactor of the element aj in the deter-
minant a. It is well known that the sum of the products of
the elements of the sth row (or column) by the cofactors of the
corresponding elements of the jth row (or column) is equal to
aif ¢ = j, and to zero if ¢ ;. Consequently

aid}+aidi+ ... +alA} = adj,
where the symbols 67 are defined by
=1 if i=j
and & =0 if i*j}'

WRG 1



2 SOME PRELIMINARIES (1

These symbols are called the Kronecker deltas, and are used
constantly throughout these pages. The above equation, and
the corresponding one obtained by interchanging rows and
columns, may be expressed

) R

$" o} = ad,
Kk

1,..n X .
and S akd), = adl.
%

Following the summation convention, due to Einstein, we
dispense with the sign of summation and write these simply
afdf=adl, = .. (3)
and akdi =adl. ... (3"
In accordance with this summation convention, when the
same index appears in any term as a subscript and a super-
script, this term stands for the sum of all the terms obtained
by giving that index all the values it may take. In (3) or (3')
the index k appears as subscript and superscript in the same
term; so that the single term expressed stands for the sum of
n terms. The repeated index is called a dummy or an umbral
index, because the value of the expression does not depend
on the symbol used for this index. Thus

ajA¥ = aj Al
We may also remark that, in agreement with the summation
COHTEAtion, Si= 4844 =0 . (4)

Hence the necessity of writing the first of equations (2) in
that form.
The determinant of the n? cofactors A4 of the elements of
(1) is called the adjoint of a. We denote it by 4. Thus
A4 =|4i].
It is well known that* 4 =t ... (8)

* See, e.g., Bocher, 1907, 1, p. 33. The references are to the Biblio-
graphy at the end of the book.



2] DETERMINANTS. SUMMATION CONVENTION 3

The rule for forming the product of two determinants of the
same order may be neatly expressed by means of the sum-
mation convention. According to this rule the product of the
determinants | a} | and | b} | is the determinant whose elements

‘ .
pj are given by Pt = aib,
Thus |a§]. 16| = | aibh].
A second application of this rule shows that
laj]-165]- ¢} = | aibie} |,
and so on.

2. Differentiation of a determinant.

If the elements of the determinant a are functions of the
independent variables z, y, ..., the derivatives of a with respect
to these variables are given by formulae of the type

b Aga_axa;:, ...... (6)
in which the second member stands for a double sum, the
repeated indices ¢, j each taking all integral values from 1 to n.

To prove this formula we observe that the expansion of
the determinant consists of a sum of terms, each of which is a
product of » elements. The derivative of this sum is a sum of
terms, each of which is the product of n — 1 elements and the
derivative of another element; and the derivative of every
element occurs in the sum. If we collect all the terms con-
taining the derivative of the element af, it is clear from (3)
that the coefficient of this derivative is Ai. Thus the whole
sum, which expresses the derivative of a, is the sum of terms
such as 5

Agé;a},

the summation being extended to all the elements of the
determinant, that is to say, to all rows and all columns. But
this summation is indicated by the repeated indices in the
term just written. Hence we have the formula (6).
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3. Matrices. Rank of a matrix.

A system of mn quantities, arranged in a rectangular array
of m rows and » columns, is called a matriz. Let the mn quan-
tities be denoted by a}, i taking the values 1, 2, ..., m and j the

values 1, 2, ..., n. Then the matrix is usually expressed in
the form
a} a .. al
2 2 2
o o ... &
ai* a3 ay
; 1=1,2 m
or, more briefl at LT,
’ v, gl =12 ..,n

If m = n, the matrix is said to be a square matrix of order n;
and the determinant |af| is called the determinant of the
square matrix.

By striking out certain rows or columns (or both) of a
matrix we obtain other matrices. In particular by doing so we
obtain certain square matrices, whose determinants are called
the determinants contained by the original matrix. If the
matrix consists of m rows and » columns, it contains deter-
minants of all orders from 1 to the smaller of the integers m
and n. It frequently happens that all the determinants of
orders greater than a certain integer are zero. The rank of a
matrix is defined as the order of the non-zero determinant of
highest order contained by the matrix. Thus, if the rank is r,
the matrix contains at least one determinant of order r which
is not zero, while all its determinants of order greater than r
are zero.

4. Linear equations. Cramer’s rule.
Consider the system of » linear equations

ala' +adx?+ ... +alz™ = bt

aix' +adx?+ ... +alz" = b?

.................................

- (1)



4] LINEAR EQUATIONS. CRAMER'S RULE 5 -

in the n unknowns 2!, 22, ..., 2*, where the superscripts are
merely distinguishing indices, having no connection with
“powers”. The determinant |aj| of the coefficients in the
first members is the determinant (1). Its value will be denoted
by a;and, as above, A} will denote the cofactor of the element aj.
In virtue of the summation convention we may write the
ith of equations (7) in the form
afgf =bt. ... (8)

If we multiply this by A¥, and sum for all integral values of ¢
from 1 to n, we obtain

Akalat = AR,
which, in consequence of (3’), is equivalent to

adkx! = Afb'.
Now, in the sum indicated by the first member of this equation,
j taking the values 1, 2, ..., n, all the quantities 8} are zero,
except that in which j has the value k. Thus the equation
reduces to azk = A¥bi.

Consequently, provided a is not zero, the solution of the
gystem (7) is given by Ak

aF = == e (9)

This is Cramer’s rule for the solution of a system of linear
equations.

Suppose next that we have a system of m equations in n
unknowns,

.......................................... (10)
alz' +afx’+ ... +aja™ = b’"J
, . =12, ...,
The matrix a3l (z m)
i=L2,...,m

is called the matrix of the system of equations, while

at a} ... a} b

...........................
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is called the augmented matriz. It can be shown that the neces-
sary and sufficient condition that the system of equations may
be consistent is that the matrix of the system have the same
rank as the augmented matrix.* If this condition is satisfied,
and 7 is the common rank of the matrices, the values of n—r
of the unknowns may be assigned arbitrarily, and those of the
other unknowns will then be uniquely determined.

Lastly consider the system of homogeneous linear equations
obtained from (10) by taking all the quantities b equal to
zero. The augmented matrix has necessarily the same rank as
the matrix of the system of equations, so that the system has
one or more solutions. Also, as above, if the rank of the system
is r, the values of n—r of the unknowns may be assigned
arbitrarily, and those of the others will then be uniquely deter-
mined. If r = n there is only one solution, which is obviously

Bl=F = s =2 =0, e (11)

In order that there may exist a solution different from (11),
the rank of the system of equations must be less than n. In
particular, if the number of equations is less than the number
of unknowns, the equations always possess solutions other
than (11). If m = n, a necessary and sufficient condition for
a solution different from (11) is that the determinant of the
coefficients be zero.

5. Linear transformations.

In problems of algebra or analysis it is frequently con-
venient to change the variables, taking as new variables
certain functions of the original ones. A case of particular
importance is that in which the new variables are homo-
geneous linear polynomials in the original variables. Such a
transformation, or change of variables, is called a homogeneous
linear transformation. If z*, 22, ..., 2™ are the original variables
and ¥, 2, ..., y™ the new ones, the transformation is given by

* Bocher, 1907, 1, p. 46; or Dickson, 1930, 4, p. 63.
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equations of the form

y' = alal +ale?+ ... +al2

y* = atx +ajrt+ ... +ajat

where the coefficients a} are constants. If these are real the
transformation is said to be real. The matrix ||} || is called the
matrix of the transformation, and its determinant a=|aj | is
the determinant of the transformation. If this determinant
is zero the transformation is said to be singular; otherwise it
is non-singular. In accordance with the summation convention
the transformation (12) may be expressed briefly

y=ald, (12)
G,j=1,2,...,n).

Let the transformation be non-singular. Then, solving the
equations (12) for the z’s in terms of the y’s, we have, by
Cramer’s rule,

k= éA{Fyi. ...... (13)

The transformation expressed by (13) is called the inverse of
(12). Since (12) is non-singular so also is (13); for the deter-
minant of (13) has the value

a-n| 4| = a?
in virtue of (5).

6. Functional determinants.
Consider n functions of n variables,
$ia", 2, @)y (1=21,2,0050),

which are finite and continuous, along with their derivatives,
in the field considered. The Jacobian or functional deter-
minant of the y’s with respect to the z’s is the determinant,
of order n, whose elements are the partial derivatives of



