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Preface

In this book, methods of adaptive signal processing are borrowed from the field of digital
signal processing to solve problems in dynamic systems control. Adaptive filters, whose
design and behavioral characteristics are well known in the signal processing world, can
be used to control plant dynamics and to minimize the effects of plant disturbance. Plant
dynamic control and plant disturbance control are treated herein as two separate prob-
lems. Optimal least squares methods are developed for these problems, methods that do
not interfere with each other. Thus, dynamic control and disturbance cancelling can be op-
timized without one process compromising the other. Better control performance is the re-
sult. This is not always the case with existing control techniques.

Inverse control of plant dynamics involves feed-forward compensation, driving the
plant with a filter whose transfer function is the inverse of that of the plant. Inverse com-
pensation is well known in signal processing and communications.

Every MODEM in the world uses adaptive filters for channel equalization. Similar
techniques are described here for plant dynamic control. Inverse control is feed-forward
control. The same precision of feedback that is obtained with existing control techniques
is also obtained with adaptive feed-forward control since feedback is incorporated in the
adaptive algorithm for obtaining the parameters of the feed-forward compensator.

Inverse control can be used effectively with minimum phase and non-minimum phase
plants. It cannot work with unstable plants, however. They must first be stabilized with
conventional feedback, of any design that simply achieves stability. Then the plant and
stabilizing feedback can be treated as an equivalent stable plant that can be controlled in
the usual way with adaptive inverse control. Model reference control can be readily incor-
porated into adaptive inverse control.

Adaptive noise cancelling techniques are described that allow optimal reduction of
plant disturbance, in the least squares sense. Adaptive noise cancelling does not affect in-
verse control of plant dynamics. Inverse control of plant dynamics does not affect adap-
tive disturbance cancelling. If initial feedback is needed to provide plant stabilization, the
design of the stabilizer has no effect on the optimality of the adaptive disturbance can-
celler.

The designs of the adaptive inverse controller and of the adaptive disturbance canceller
are quite simple once the control engineer gains a mastery of adaptive signal processing.
This book provides an introductory presentation of this subject with enough detail to do
system design. The mathematics is simple and indeed the whole concept is simple and
easy to implement, especially when compared with the complexity of current control
methods.

Adaptive inverse control is not only simple, but it affords new control capabilities that
can often be superior to those of conventional systems. Many practical examples and ap-
plications are shown in the text.

Another feature of adaptive inverse control is that the same methods can be applied to
adaptive control of nonlinear plants. This is surprising because nonlinear plants do not
have transfer functions. But approximate inverses are possible. Experimental results with
nonlinear plants have shown great promise. Optimality cannot be proven yet, but excellent

XV
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results have been obtained. This is a very promising subject for research. The whole area
of nonlinear adaptive filtering is a fascinating research field that already shows great re-
sults and great promise.

This book was originally published under the title Adaptive Inverse Control. We are
grateful to IEEE Press and John Wiley, Inc. for bringing it back into print. We are also
grateful to colleagues Gene Franklin, Karl Johan Astrém, Jose Cruz, Brian Anderson,
Paul Werbos, and Shmuel Merhav for their early comments, suggestions, and feedback.
We are grateful to former Stanford students Steve Piche, Michel Bilello, Gregory Plett,
and Ming-Chang Liu who confirmed the results with experiments and who assisted with
preparation of the drawings and final manuscript.
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Chapter 1

1.0

The Adaptive Inverse
Control Concept

INTRODUCTION

Adaptive filtering techniques have been successfully applied to adaptive antenna systems
[1-20]; to communications problems such as channel equalization [21-30] and echo can-
celation in long-distance telephony [31-39]; to interference canceling [40—46]; to spectral
estimation [47-57]; to speech analysis and synthesis [58-60]; and to many other signal pro-
cessing problems. It is the purpose of this book to show how adaptive filtering algorithms
can be used to achieve adaptive control of unknown and possibly time varying systems.

The system to be controlled, usually called the “plant,” may be noisy, that is, subject
to disturbances, and for the most part it may be unknown in character.! The plant and its
internal disturbances may be time variable in an unknown way. In some cases, the plant
might even be unstable. Adaptive control systems for such plants would be advantageous
over fixed systems since the parameters of adaptive systems can be adjusted or tailored to the
unknown and varying requirements of the plant to be controlled. Adaptivity finds a natural
area of application in the control field [88].

In the past two decades or so, many hundreds of papers have been published on adap-
tive control systems in the Transactions of the IEEE Control Systems Society, in Automat-
ica, in the IFAC (International Federation for Automatic Control) journals and conference
proceedings, and elsewhere. At the same time, a very large number of papers on adaptive
signal processing and adaptive array processing have appeared in the Transactions of the
IEEE Signal Processing Society, Antennas and Propagation Society, Communications So-
ciety, Circuits and Systems Society, Aerospace and Electronics Society, the Proceedings
of the IEEE, and elsewhere. Many books have been published on these subjects. The two
schools of thought, adaptive controls and adaptive signal processing, have developed al-
most independently. The control theorists have by and large studied adaptive control using

!Some prior knowledge of the character of the plant and its internal disturbances will be needed in order to
establish proper control. For example, at least a rough idea of the transient response time of the plant would be re-
quired in order to model it adaptively. Some idea of how rapidly the plant characteristics change for plants that vary
over time would be needed. Some knowledge of the plant disturbance would be useful, such as disturbance power
level at the plant output. Detailed knowledge of the plant and its disturbances would not be required however.
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state variable feedback coupled through variable parameter networks to regulate unknown
plants and to control their disturbances. The signal processing people have been working
on problems that for the most part involve adapting weights of transversal filters by gradient
methods and employing the resultant adaptive filters to systems without feedback (except
for feedback in the adaptive process itself). The signal processing people have found a great
number of practical applications for their work, and so have the adaptive control people.

The goal of this book is not to bridge the gap between these two schools of thought
but to attack certain problems in adaptive control from an alternative point of view using
the methodology of adaptive signal processing. The result is what we call “adaptive inverse
control.”

We begin with a discussion of direct modeling (or identifying) the characteristics of
the unknown plant using simple adaptive filtering methods. Then we show how similar
methods, with some modification but in a different configuration, can be used for inverse
modeling (or equalization or deconvolution). Inverse plant models can be used to control
plant dynamics. Next we show how both direct and inverse models can be used in the same
adaptive process to minimize the effects of plant disturbance. In this development, we as-
sume that the plant is completely controllable and observable, that it can (in a quasistatic
sense) be represented in terms of an input-output transfer function (albeit an unknown one),
and that the plant is stable (if unstable, someone has previously applied stabilization feed-
back). The plant may be either minimum-phase or nonminimum-phase.

The basic ideas of adaptive inverse control have been under development at Stanford
University over the course of many years. The earliest related work is described in a paper
by Widrow on blood pressure regulation [61]. Subsequent work is reported in several pa-
pers that were presented at Asilomar conferences [62, 63]. A Ph.D. dissertation by Shmuel
Schaffer was concerned with model-reference adaptive inverse control [64]. A tutorial on
the work is given by Widrow and Stearns [65]. The first paper on adaptive inverse control in-
cluding adaptive plant disturbance canceling was presented by Widrow and Walach in 1983
at the First IFAC Workshop in Control and Signal Processing in San Francisco [66]. The sec-
ond presentation was by Widrow in 1986 in a keynote talk at the Second IFAC Workshop
on Adaptive Systems in Control and Signal Processing, University of Lund, Sweden [67].
There have been almost no other publications on inverse control and disturbance canceling
until recently. Several recent publications in the neural network literature have appeared
concerning nonlinear adaptive inverse control [95, 96, 97].

INVERSE CONTROL

A conventional control system like the one illustrated in Fig. 1.1 uses feedback, sensing the
response of the plant to be controlled, comparing this response to a desired response, and
using the difference to excite an actuator or controller whose output drives the plant input
to cause the plant output to follow the desired response more closely.

The system of Fig. 1.1 has unity feedback and is often called a follow-up system since
the objective is that the plant output follow the input signal or the command input. Any
difference between the plant output and the command input signal is an error signal sensed
by the controller which amplifies and filters it to drive the plant to reduce the error.
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Error Plant

Command Signal input Plant
input z #1 Controller [ % output
+

Figure 1.1 A conventional feedback control system.

The use of feedback must be done in a careful way to prevent instability and to achieve
satisfactory dynamic response. When the plant characteristics are time variable or nonsta-
tionary, it is sometimes necessary to design the controller to vary with the plant. A common
objective in doing this would be to minimize the mean square of the error. But achieving this
objective is generally difficult. If one knew the plant characteristics versus time, one might
be able to determine the best controller versus time. Not knowing the plant, an identification
process could be used to estimate plant characteristics over time, and these characteristics
could be used to determine the controller over time. Another idea would be to parametize
the controller and vary the parameters to directly minimize mean square error. The diffi-
culty with this approach is that, regardless of how the controller is parametized, the mean
square error versus the parameter values would be a function not having a unique extremum
and one that could easily become infinite if the controller parameters were pushed beyond
the brink of stability.

The objective of the present work is to take an alternative look at the subject of adap-
tive control. The approach to be developed, adaptive inverse control, in some sense involves
open-loop control and it is quite different from the feedback-control approach in Fig. 1.1.
We attempt to develop a form of adaptive control that is simple, robust, and precise. With
some knowledge of the subject of adaptive filtering, adaptive inverse control is easy to un-
derstand and use in practice.

/ Plant

Command input
input 1 Controller

Plant
output

Adaptive
algorithm

Figure 1.2  Basic concept of adaptive inverse control.

The basic idea of adaptive inverse control is to drive the plant with a signal from a
controller whose transfer function is the inverse of that of the plant itself. The idea is illus-
trated with the system of Fig. 1.2. The objective of this system is to cause the plant output to
follow the command input. Since the plant is generally unknown, it is necessary to adapt or
to adjust the parameters of the controller in order to create a true plant inverse. An error sig-



