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1. Introduction

My objective in this paper is to give some of the basic results in the theory of bifurca-
tion in differential equations. It is difficult to trace the historical development of any im-
portant concept and bifurcation theory is no exception. However, a careful study of litera-
ture shows that Poincaré [1], [2] and Liapunov [1], [2] are responsible for our present
basic philosophy as well as several of the fundamental ideas of the methods that we pres-
ently employ. These two persons can be directly linked with the importance of exchanges
of stability, the occurrence of complicated motions in dynamical systems, the principle of
reduction to lower dimensional problems, the philosophy of genericity and the transforma-
tion theory of differential equations that is so important in obtaining approximations of the
center manifold and the flow on the center manifold. In many respects, we are still exploit-
ing the ideas of these two giants.

After the initial impetus of Poincaré and Liapunov, it is somewhat surprising that
modern bifurcation theory did not appear at an earlie. date. It is perhaps true that the
ideas of Liapunov connected with bifurcation theory were being developed more extensively
than the corresponding ones of Poincaré. There was a very active group in the U.S.S.R.
(consisting of Andronov, Vitt, Khaikin, Bogoliubov, Krylov, Leontovich, Malkin and others)
working on critical cases in stability theory, nonlinear oscillations and the general theory of
integral manifolds. The techniques developed from the study of these areas are fundamental
ingredients in dynamic bifurcation theory (see Hale [1] for some references).

A fundamental step towards modern bifurcation theory in differential equations oc-
curred with the definition of structural stability of Andronov and Pontrjagin [1] in 1937
and the classification of structurally stable systems in the plane. With these concepts, An-
dronov and Leontovich [1] were able to make precise definitions of types of bifurcation
points which had the possibility of being classified. These results were applied extensively
to the theory of nonlinear oscillations by Andronov, Vitt and Khaikin in 1937 (the second
edition of this book is Andronov, Vitt and Khaikin [1]). As Minorsky [1] said in 1962:
“Having established the initial advance in the field of nonlinear oscillations (up to 1940), the
Russian scientists maintain their leadership and initiative characterized by a remarkable co-
ordination of efforts between the mathematical and experimental parts of these fundamental
researches.” There were several important developments in this intervening period by Levin-
son [1], [2], Cartwright and Littlewood (see Cartwright [1]) on the forced van der Pol and
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Lienard equations. However, in western Europe and the United States, the interest in this
aspect of differential equations had never been very extensive. In addition, there was little
awareness of the developments that had been made in the U.S.S.R., and, as a consequence,
some duplication of effort occurred.

Since 1960, there have been extensive developments in the abstract theory of dynami-
cal systems. At the same time, some of this theory has been applied to very interesting
problems in the biological and physical sciences. In an attempt to explain phenomena that
occur in nature, it has been necessary for researchers to discuss the dynamic bifurcation of
specific types of equations in great detail. This has led to an exciting interaction between
aralytical and theoretical methods.

In this paper, we present some of the concepts and results that play an important role
in these areas. When the dimension of the system is one or two, one can obtain a rather
complete theory at least for general one parameter families of vector fields. For either
several parameter problems or for the dimension of the system greater than two, only par-
tial results are known. On the other hand, the results in low dimension are applicable to
higher dimensional problems (even infinite dimensional ones) when the discussion is restricted
to a neighborhood of an equilibrium point for which the theory of center manifolds can be
employed.

The table of contents expresses in general terms the substance of this paper. The first
eight sections deal with structural stability and bifurcation in the low dimensional problems
mentioned above. §9 is devoted to the formulation of some of the basic problems in the
qualitative theory for a special class of dynamical systems in infinite dimensions. This class
is general enough to include many functional differential equations and partial differential
equations. §10 is concerned primarily with some types of bifurcation that occur because
the base space is infinite dimensional. Due to space, very few proofs are given. Also, there
are several important omissions of topics from differential equations that are systematically
used throughout, but which are not as well known as they should be. Most notable among
these are the general theory of integral manifolds (for general references, see Hale [1]), the
center manifold theorem (see Kelley [1]), the theory of transformation to normal forms
(for references, see Bibikov [1], Br'juno [1], Henrard [1]) and the general method of
averaging (for references, see Hale [1]).

The author is endebted to many colleagues and students whose ideas have been incor-
porated into these notes—too many to mention by name. He also acknowledges the initia-
tive of Professor Laksmikantham in proposing the CBMS Regional Conference. Finally,
Sandra Spinacci has exhibited her usual patience and understanding in the preparation of the
final manuscript.



2. On the definition of bifurcation

Suppose X, Z are topological spaces, U C X is open, A is an open set in a topological
space and f: U x A — Z is a given continuous function. Let

S={(x, \)EUx A: f(x, \) =0}
be the set of solutions of the equation f(x, A\) = 0. For a fixed A, let

Sy, = {x: (x, \) € S}

be the ‘“cross-section” of the solution set at A.

The basic problem is to discuss the dependence of the set S, on A. In a specific prob-
lem, one has a prescription which compares S, with S, for different A and u. This com-
parison is usually made by means of an equivalence relation which divides the sets {S,, A € A}
into equivalence classes. Given the function f and an equivalence relation ~, we say A is a
bifurcation point for (f, ~) if, for any neighborhood V of \,, there are A;, X\, € V such
that S>‘1 ¥ Sxy- This definition is less general than the one in Marsden [1].

A special case is when the equivalence relation specifies that S, ~ S, if the sets S\
and S, are homeomorphic. This is a very convenient choice when studying the change in
the structure of the set of equilibrium points in a differential equation as parameters are
varied. In this case, the function f represents the vector field in a differential equation
dx/dt = f(x, N). It is also appropriate in differential equations for the study of the set of
solutions of some prescribed type; for example, periodic solutions, invariant tori, etc. In
this latter case, the topological spaces are defined so that they include only those functions
which exhibit this prescribed behavior and the function f could be the differential operator,
f(x, N) = dx/dt — g(x, \).

To study more general bifurcations in differential equations, the equivalence defined
by homeomorphism is not sufficient. Consider a differential equation du/dt — g(u, \) = 0
where (u, \) € x A and 2 is an open set in some Banach space E. For X, Z Banach spaces
of functions from [0, ) to E, let U C X be defined by U= {u € X: u(¥) € Q, t € [0, =)}.
The above equation can be written formally as f(x, A) = 0 where f: U x A — Z, f(u, N)(?)
= du(t)/dt — g(u(t), \). Assuming everything can be made rigorous and that all solutions
are obtained in this way, a comparison of the corresponding sets S, and S, by homeomor-
phism will not be very interesting. Thus an alternative approach must be taken.

Suppose the differential equation generates a strongly continuous semigroup T, (¢),

t >0, o0n Q. A frequently used concept of equivalence in differential equations is to say
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that g(-, A) ~ g(*, u) if there is a homeomorphism 4: £ — § such that # maps orbits of
T, (¢) onto orbits of T,,(¢) preserving the sense of direction in time. A vector field g(, Ng)
is structurally stable if there is a neighborhood ¥V of A, such that g(:, ) ~ g(*, A,) for all
A € V. Thus, A, is a bifurcation point if A, is not structurally stable.

A different but equivalent formulation of the above concept of equivalence in differen-
tial equations was introduced by Andronov and Pontrjagin [1] in 1937 for differential equa-
tions in the plane. They gave a characterization of the structurally stable vector fields which
will be discussed later. Peixoto [1] generalized these results to arbitrary compact two di-
mensional manifolds and proved the set of structurally stable vector fields is open and dense.
For some time, it was the feeling that this same property should hold true for arbitrary sys-
tems. Unfortunately, it was shown by Smale [1] that structurally stable vector fields are
not dense in dimension = 4. Williams [1] proved the same result for n = 3. Since many
vector fields cannot be compared by this equivalence relation, it becomes necessary to
weaken the concept of equivalence. Each new definition of equivalence leads to a new type
of stable vector field (ones which are equivalent to everyone in a neighborhood of it) and
thus a new type of bifurcation. The ultimate goal is to have the definition restrictive enough
to permit classification of the stable ones, but, at the same time, to have the stable vector
fields generic; that is, the intersection of a countable sequence of open dense sets. Much of
the research in finite dimensional abstract dynamical systems in the last twenty years has
been devoted to this general problem. Relevant references are Smale [2], Peixoto [2], [3],
Palis and Melo [1], Newhouse [1], Nitecki [1], Shub [1], Guckenheimer [1], Arnol'd [1].
In the next section, we give more specific details.

When the evolutionary equation is infinite dimensional, several new problems arise.
This case will be discussed in a later section.



3. Structural stability and generic properties in R”

Suppose £ is an open set in R” with dQ =T, Q= Q UT.

The space C"(§2, R™) is the Banach space of functions bounded and continuous to-
gether with all derivatives up through order 7 > 0 with the norm of fin C"(£, R") being
given by the maximum of the supremum over & of the norm of f and its derivatives up
through order r. Let X% = X" (&) be the set of elements of C"(2, R") which are transver-
sal toI"'. For any f€ X’,',, r=1, the differential equation

@3.1) x = f(x)

defines a family of transformations Tf(t) on § satisfying the semigroup property with
T()xo = x(t, x,), where x(t, x,) is the solution of (3.1) with x(0, x,) = x,. Further-
more, for each x, € 2, there are an yo <0, on = 0, such that the maximal interval of
definition of T,.(t)x0 is [a, o B, o). The number a, " is either that value « % where
Tf(c\zxo)xo € 982 =TI or —o° and in this case the interval [axo, on) is (—oo, 5xo). The B
number 8, o is defined in a similar way in the positive direction. The operator Tf(t) on §2
satisfies Tf(O) = [, the identity, Tf(t + S)x = Tf(t) Tf(s)x for those ¢, s for which it is
meaningful and T(#)x has continuous derivatives up through order  in ¢, x.

The orbit 7f(x) of f through x is

1) = U{T(0)x, t € [o,, B,]}.
The w-limit set wf(x) and a-limit set « f(x) of the orbit 7f(x) are defined by

wx)= Nl U T0)x, a(x)= Nd U T0x
720 t27 7<0 t<7

An equilibrium point or critical point of f is a zero of f. A periodic orbit of f is an orbit
which is a closed curve. A set M C Q is invariant if, for each x € M, Tf(t)x is defined for
t € (—oo, o) and belongs to M for ¢t € (—oo, ). This implies T,()M = M for t € (—o°, ).

The vector fields in (3.1) are chosen from X},; that is, are transversal to I', in order
to eliminate technical difficulties with points of contact on I'. We are discussing the vector
fields in R”, but many of the remarks hold for vector fields on compact manifolds M.

DEFINITION 3.1. Two vector fields f, g in X},, r > 1, are equivalent, f ~ g, if there
is a homeomorphism h:  — & such that k maps the orbits defined by f homeomorphic-
ally onto the orbits defined by g with the sense of direction in time preserved. An f€ X/,
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is said to be structurally stable if there is a neighborhood U of f such that f ~ g for every
g€ U An f€ X}, is a bifurcation point if f is not structurally stable.

Two important remarks need to be made about this definition. Definition 3.1 would
not be meaningful without the condition » > 1. In fact, for » = 0, given any vector field f
that has an isolated zero at x, and any € > 0, there are a § > 0 and a function g such that
|f— gl < eand g(x) = 0 for |x — x,| < 8. Therefore, no f with an isolated zero could be
structurally stable.

In Definition 3.1, it is tempting to require that the mapping 4 be a diffeomorphism.
However, if f(0) = 0, g(0) = 0, 3f(0)/ox = A, 9g(0)/ox = B, and f ~ g in a neighborhood
of zero, then one can show (see Peixoto [2], [4]) that the eigenvalues of A and B must be
proportional. Since one can always make a small perturbation that will change one eigen-
value of 4 and not the other, it follows that no vector field with a zero could be structurally
stable. Thus, the Definition 3.1 would have little meaning. If x, is a critical point of f and
A = 3f(x,)/ox, then x,, is said to be hyperbolic if the real parts of the eigenvalues of 4
have nonzero real parts. The point x, is a saddle point of order k, if it is hyperbolic and
there are k eigenvalues of 4 with positive real parts. The term saddle point without the
designation of the order will refer to any saddle point of order k with k # 0 or n.

If n = 2, a saddle point of order 1 corresponds to the usual definition of saddle point.
For n = 2, a saddle point of order 0 or 2 corresponds to a node or focus depending upon
whether the eigenvalues of 4 are real or complex.

If y is a periodic orbit of f, then one can define a Poincaré map near v in the following
way. For any arc C transversal to vy at p, and any p € C sufficiently near p,, there is a
unique 7(p) > 0 such that Tf(‘r(p))p eC, Tf(t)p & C for 0 <t <7(p). The mapp —
Ty(r(p))p is called the Poincaré map n(p). This map in C" and n(p,) = p,. The periodic
orbit v is hyperbolic if no eigenvalue of dm(p,)/dp has modulus one.

If n = 2, the periodic orbit 7 is hyperbolic if dn(p,)/dp # 1. It is instructive to give
an equivalent definition in terms of the vector field itself. If v = {¢(¢), t € R} where ¢(7)
is periodic of least period w and #(t) = f(¢(1)) then the linear variational equation for ¢ is

(32) y=A@®y, A@) = of(¢(2))/ox.

One characteristic multiplier of this w-periodic system is 1 since ¢ satisfies (3.2). If X(¢) is
a principal matrix solution of (3.2), then the product of the multipliers is equal to det X(w).
Thus, if P, = €Xp WO, 0, real, is the other multiplier, then

1l (w
3.3) 0 = ;fo tr A(s) ds.

One can then easily show that 7 is hyperbolic if and only if 0y # 0, unstable if O 0 and
asymptotically orbitally stable if 0, < 0.

For two dimensional systems, the following result of Andronov and Pontrjagin [1],
Peixoto [1], completely solves the problem of structural stability in X% .
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THEOREM 32. If 25 C X%, r > 1, is the set of structuraily stable vector fields in X,
then f € X', if and only if the following conditions are satisfied:

(i) The critical points of f are hyperbolic.

(ii) The periodic orbits of f are hyperbolic.

(iii) There is no orbit of f with both the a- and w-limit sets being saddle points.

Furthermore, T, is open and dense in X5.

The fact that a structurally stable vector field must satisfy (i)—(iii) is very easy to
prove. However, the converse is more difficult and relies heavily upon the following result
of Hartman [1], [3] Grobman [1], and its extension to diffeomorphisms which is valid in
the space of n-dimensional vector fields XJ,.

THEOREM 3.3 (HARTMAN-GROBMAN). If fE€ X!, r>1, f(xy) = 0, and the eigen-
values of A = 3f(x,)[dx have nonzero real parts then, in a neighborhood of xo, [ is equiva-
lent to the linear equation x = Ax.

In Theorem 3.2, the fact that X’, is open follows from the definition and the fact that
it is dense follows from an argument in transversality theory. See Peixoto [1] for a com-
plete proof.

Condition (i), the Implicit Function Theorem and the compactness of £ imply that
f € ZY has only a finite number of critical points. Using (ii), (iii) and similar arguments, one
shows there is only a finite number of periodic orbits.

The simplicity of the description of the structurally stable systems in two dimensions
given by Theorem 3.2 permits a complete classification in terms of certain distinguished
graphs (see Peixoto [4]).

To what extent does Theorem 3.2 hold in dimension n > 3? As remarked earlier, the
structurally stable systems are not dense in X, for n > 3. This was proved by Smale [1]
for n > 4 and by Williams [1] for n > 3. However, there are structurally stable systems in
every dimension and on every type of n-dimensional manifold.

Even though Z7 is not dense, it is very important to classify structurally stable vector
fields and to find “simple” classes of vector fields which are generic. Let us turn first to
the problem of genericity.

The concepts (i), (ii) in Theorem 2 have meaning in R". Also, (iii) can be ex-
tended in the following way. For any hyperbolic critical point or periodic orbit of a
vector field f € X, one can definc the global stable and unstable manifolds in the fol-
lowing way. The stable (unstable) manifold of a hyperbolic critical point X is the set
of x € Q such that Tf(t)x — Xo a8t —> +oo (—o0). Similar definitions are given for a
periodic orbit.

In R?, condition (iii) is then equivalent to the statement that the stable and unstable
manifolds of all critical points and periodic orbits intersect transversally. One can then ask
if the vector fields in X}, which satisfy these properties are generic in X n- The answer is
yes and is the famous theorem of Kupka [1] and Smale [3].
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THEOREM 3.4 (KUPKA-SMALE). The set of vector fields in X}, for which the critical
points and periodic orbits are hyperbolic with stable and unstable manifolds intersecting
transversally is generic.

Any vector field satisfying the conditions of Theorem 3.4 will be called a Kupka-Smale
(KS) vector field. They can have only a finite number of critical points with the proof being
the same as in two dimensions. However, in contrast to two dimensions, there can be an
infinite number of periodic orbits if the dimension is > 3 (for an example, see Nitecki [1],
Palis and deMelo [1]).

The KS vector fields are dense, but all KS vector fields cannot be structurally stable
since the structurally stable systems are not dense in dimension = 3. To find a subset of
the KS vector fields which are structurally stable, one must put some further restrictions on
the behavior of the a- and w-limit sets of orbits.

For f€ X", let

n’

L, (/)= {p: p €aq) for some q}, L,(f)={p:p € w(q) for some q}.

DEFINITION 3.5. Suppose /€ X},. A point p € Q is a wandering point of f if there
are a neighborhood V of p and #, > 0 such that if £ > ¢, then Tf(t) VN V=g. Inthe
contrary case, p is a nonwandering point of f. The set of nonwandering points of f is de-
noted by (f).

In Definition 3.5, the notation |#] > t, means for all £ > ¢ and all ¢ < —t, as long as
the orbit is defined.

We remark that Q(f) O L, (f) U L_,(f), but it is easy to construct examples for
which the inclusion is proper (see, for example, Palis and deMelo [1]).

DEFINITION 3.6. A vector f € X! is Morse-Smale (MS) if it is KS with a finite num-
ber of critical points and periodic orbits with Q(f) equal to the set of critical points and
periodic orbits.

Some of the basic results on Morse-Smale systems are due to Smale [4], Palis [1] and
Palis and Smale [1]. They are summarized in the following theorem which is also valid for
vector fields on any compact manifold.

THrorEM 3.7. (1) The set of MS systems is open and nonempty in X}, for any n.

(2) Any f € MS is structurally stable.

(3) The set of gradient vector fields which are MS is open and dense in the set of all
gradient vector fields.

Since the MS systems are structurally stable, they cannot be dense in dimension 17 = 3.
On the other hand, one can ask if there are any other structurally stable systems which are
not MS. One way to answer this question is to construct a structurally stable system with
infinitely many periodic orbits.

To see how such a situation might arise, suppose 2 C R® and f € X"5() has a hyper-
bolic periodic orbit y. Let WS(y), W¥(y) be the stable and unstable manifolds for y and let
7 be a Poincaré map of some transversal r of y at p and Wi(y) = WS(y) Nr, Wi(y) = W(y) N r;
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that is, that part of the stable and unstable manifolds in the transversal . Then W;f(y),

W} (y) are the local stable and unstable manifolds of the point p as a fixed point of the dif-
feomorphism 7. There is the possibility that WS(y) N W/ (y) contains points other than the
fixed point p of . Any such point q is called homoclinic to p. A point q is called trans-
verse homoclinic to p if W;(y) is transversal to W)(y) at q. If q is transverse homoclinic to
p, then the behavior of the stable and unstable manifold is very bad. In fact, since 7W(y)
C Wi(y), aW)(y) C W)(y) and g € Wi(v) N W(7), ¢ # p, we must have 7"g € Wi(y) N
W(y) foralln=0,%1,+2,...and n"q — p as n — oo, If, in addition, ¢ is transverse
homoclinic to p, continuity of the map m implies that the picture near p must be something
like the one in Figure 1. The arrows do not represent the direction of a flow as for vector
fields, but only that points move in the direction indicated under iterates of n. In Figure 1,
we have only indicated some of the complications that are arising from looking at the for-
ward evolution of the unstable manifold. The same type of thing must occur with the
stable manifold. Note that there will be infinitely many transverse intersections in any
neighborhood of the homoclinic point q.

Wi(p)

Wi (p)

FIGURE 1.

This phenomenon was observed by Poincaré [1]. Birkhoff [1] proved that every
transverse homoclinic point is the limit of periodic points (that is, points x such that 7"x = x
for some integer n) and indicated some of the random behavior that occurs near these
points. Smale [1] carried the analysis even further. We briefly describe the results following
Moser [2]. If 4 is a finite or countably infinite sequence of symbols, let S be the collec-
tion of doubly infinite sequencesr s= {5, k=0,%1, ...} with each s, € A. The shift
automorphism o on S is defined by os = {3, k= 0,1, ...}, 5 =5, _, forall &

Near a homoclinic point g, we can construct a small quadrilateral Q, two of its sides
consisting of parts of W)(p), W;(p) and the others parallel to the tangents of these sets at
q (see Figure 1). For any point a € Q, let K = k(c) be the smallest positive integer such that
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n*(a) € Q, if it exists. Let D(7) be the set of « € Q for which such a k exists and define
Fa = n¥(a) for « € D(F). The map 7 is called the transversal map of = for the quadrilateral Q.

THEOREM 3.8. If m is a C™-diffeomorphism of the plane with a point q transverse
homoclinic to a hyperbolic fixed point p, then in a neighborhood of q, the transversal map
T of a quadrilateral possesses an invariant set I homeomorphic to the sequence space S With
an infinite number of symbols by a map t: S — I such that 7T = 10. Also, there is an in-
teger k, an invariant set T of n* and a homeomorphism 7: S — 7, where S is the sequence
space of a finite number of symbols, such that T = To.

Note the difference in the two conclusions in the theorem. In the first part, the set /
is invariant for # and 7 is equivalent on I to the shift automorphism on an infinite number
of symbols. In the second part, the set T is invariant under a fixed power k of  itself and
w¥ is equivalent on T to the shift automorphism on a finite number of symbols.

It follows immediately from Theorem 3.8 that there are infinitely many periodic
points in a neighborhood of the transverse homoclinic point and they are dense. Also, there
is a random behavior to the orbits on the invariant set I (or 7) since knowing the early
terms of a sequence tells nothing about the later terms of a sequence.

For examples of transverse homoclinic points in celestial mechanics, see Moser [2].
Transverse homoclinic points also occur in structurally stable systems as we shall see below.
More examples in second order nonautonomous differential equations will be given later
when we are studying analytical methods in bifurcation theory. Now, we prefer to continue
the general survey.

To describe further aspects of the theory, it is convenient to work with Diff"(M),

r > 1, the space of diffeomorphisms with derivatives up through order r on a smooth com-
pact manifold M. This can be related to differential equations in several ways. One of the
most important is through a Poincaré map for periodic orbits as described above. More gen-
erally, if f€ X;(ﬁ), M C Q is compact and, for each x € M, there is a 7(x) > O such that
Tf('r(x))x EM, T,(t)x & M, 0 <t < 7(x), then the map x Tf('r(x))x is in Diff"(M) if it
has the required number of derivatives.

If g € Diff"(M), a point p € M is a periodic point of g if there is a positive integer
n = n(p) such that T"p = p. The periodic orbit is hyperbolic if no eigenvalue of 9g(p)/ox
has modulus one. For each hyperbolic periodic point p of g, one can define the global
stable manifold WS(p) and unstable manifold W¥(p) in a manner similar to the definitions
for vector fields.

We now give an example due to Thom which was an inspiration for many further de-
velopments in dynamical systems. In R? identify the points (x, y), (x + m, y + n) for all
integers m, n. Any unit square with integer vertices may be identified with the torus 72
and any mapping of the plane into itself yields a mapping of T2 into T? in the obvious way.
Let L be a 2 x 2 matrix with integer coefficients, determinant 1 and real eigenvalues. The
eigenvalues are then A, A~! with A\ < 1 irrational. This implies that the linear subspaces
E®, E* generated respectively by the eigenvectors for A, A~1 have irrational slope. For any
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x € R?, each of the lines x + E¥, x + E* is invariant under L. The map L on R? generates
a natural map 7 on T2 obtained from the above identification of 72 with unit squares in
R? with integer coefficients. If p = mx € T2, x € R?, let WS(p) = n(x + ES), W¥(p) =
n(x + E*). If p is a periodic point of =, then W*(p), W¥(p) are respectively the stable and
unstable manifolds of p. Since the slopes of the linear subspaces E°, E* are irrational, the
sets W(p) and W¥(p) are dense in T2 for every p € T?. Furthermore, it is not difficult to
show that every point of intersection of these sets is a point of transversal intersection. Also,
the points of intersection are dense in T2. In particular, there is a dense set of points trans-
verse homoclinic to the critical point p = m(0). Since each transverse homoclinic point is
the limit of periodic points, it follows that the periodic points of 7 are dense in 72. A sim-
ple direct proof of this last result is contained in Palis and deMelo [1, p. 171].

With m: T2 — T2 defined as above, Anosov [1], [2] showed that = is structurally
stable. A more elementary proof was given by Moser [1], [2]. Since = is structurally stable
and contains infinitely many periodic orbits, this necessarily implies that the Morse-Smale
systems are not dense in the set of structurally stable systems.

The above example was generalized by Anosov [2] in the following way.

DEFINITION 3.9. Let M be a compact manifold. An f € Diff"(M), r > 1, is an Ano-
sov diffeomorphism if the tangent space at each point x of M is a direct sum E5 © EY in-
variant under the derivative Df; that is, Df, E} = Ej ., Df, E¥ = Ef, and there is a Rie-
mannian metric on M and a constant X € (0, 1) such that |Df v < Alvl, lDfx_luI < Nuy| for
al x EM,vEE}, u €EEY.

Anosov [2] has shown that these diffeomorphisms are structurally stable. A simpler
proof was given by Moser [1], [2]. For a discussion of the restrictions that are imposed on
the manifold A in order for it to admit an Anosov diffeomorphism, see Palis and deMelo [1].

The next important step in the abstract theory of dynamical systems was taken by
Smale [2] by defining systems which satisfy Axiom A. Suppose f € Diff"(M) and A C M
is a closed invariant set. The set A is said to have a hyperbolic structure if the tangent space
at each point x € A is the direct sum E§ © EY invariant under Df and there are a Rieman-
nian metric and A € (0, 1) such that |Df vl < Avl, IDfx_lul < Mul forx € A,v € EY,

u € E¥. If A is hyperbolic, it is possible to define stable and unstable manifolds for the
set A by looking at asymptotic orbits.

DEFINITION 3.10. f € Diff"(M) satisfies Axiom A if the set of nonwandering points
Q(f) is hyperbolic and the periodic points of f are dense in ().

If f satisfies Axiom A, Smale [2] has shown that Q(f) = Q, U Q, U --- U Q, where
each §2; is closed invariant and transitive; that is, has a dense orbit. Robinson [1] has shown
that any f € Diff"(M), r > 1, is structurally stable if it satisfies Axiom A and all stable and
unstable manifolds intersect transversally. An f € Diff"(M) is said to be absolutely stable if
there are a neighborhood V(f) C Diff"(M) of f and a constant K > 0 such that, for every
g € V(f), there is a homeomorphism % of M such that hf = gh and |h — 1|, <K|f - &ly
where ||, designates the norm in C°. Results of Franks [1], Guckenheimer [1] and
Matié [1] show that f is absolutely stable if and only if it satisfies Axiom A and all stable
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and unstable manifolds intersect transversally. Mafié (unpublished) has also recently shown
that Axiom A is implied by structural stability and a technical condition on the characteris-
tic exponents of Liapunov on ().

It is also possible to study structural stability restricted to the set of nonwandering
points. More specifically, f € Diff"(M) is said to be Q-stable if there is a neighborhood V{(f)
of f such that, for every g € V(f), there is a homeomorphism k: Q(f) — S2(g) such that
hf = gh on QU f). If f satisfies Axiom A, Q(f) = Q, U -+ U Q,, then a cycle of Q is a
sequence p, € le, s wing Dy B Qk’ = Qk‘ such that W'(p) N W*(p; , ) # &, 1 <i<s—1.
Smale [2] showed that Axiom A and no cycles imply S2-stable. Palis [2] has shown that
any f satisfying Axiom A is not §2-stable if it has a cycle. It is not known if f Q-stable im-
plies that it must satisfy Axiom A.



