Advanced Digital Design
with the Veriloe HDL

Michael D. Ciletti

Department of Electrical and Computer Engineering
University of Colorado at Colorado Springs

Prentice

Hall

Pearson Education, Inc.
Upper Saddle River, New Jersey 07458

Summary of Key Verilog Features
(IEEE 1364)

Module

Encapsulates functionality; may be nested to any
depth.

module module_name (list of ports);
Declarations
Port modes: input, output, inout identifier;
Nets (e.g., wire A[3:0];)
Register variable (e.g., reg B[31: 0];)
Constants: (e.g. parameter size = 8;)
Named events
Continuous assignments

(e.g. assign sum =A + B;)
Behaviors always (cyclic), initial (single-pass)

specify ... endspecify
function ... endfunction
task ... endtask
Instantiations

primitives

modules

endmodule

Multi Input Primitives
(Each input is a scalar)

and (out, iny, iny, ... iny);
nand (out, in4, iny, ... iny);
or (out,iny, iny, ... iny);
nor (out, ing, iny, ... iny);
xor (out, iny, iny, ... iny);
xnor (out, ing, iny, ... iny);

Multi-Output Primitives

/] buffer
I inverter

buf (outy, out, ..., outy, in);
not (outy, out,, ..., outy, in);

Three-State Multi-Output Primitives
bufif0 (out, in, control); bufif1 (out, in, control);
notif0 (out, in, control); notif1 (out, in, control);
Pullups and Pulldowns

pullup (out_y); pulldown (out_y);

Propagation Delays

Single delay: and #3 G1 (y, a, b, c);
Rise/fall: and #(3, 6) G2 (y a, b, c);
Rise/fall/turnoff: bufif0 #(3, 6, 5) (y, x_in, en);
Min:typ:Max: bufif1 #(3:4:5, 4:5:6, 7,8:9)
(y, x_in, en);

Command line options for single delay value simulation:
+maxdelays, +typdelays, +mindelays

Example: verilog +mindelays testbench.v

Concurrent Behavioral Statements

May execute a level-sensitive assignment of value
to a net (keyword: assign), or may execute the state-
ments of a cyclic (keyword: always) or single-pass
(keyword: initial) behavior. The statements execute
sequentially, subject to level-sensitive or edge-sen-
sitive event control expressions.

Syntax:

assign net_name = [expression];
always begin [procedural statements] end
initial begin [procedural statements] end

Cyclic (always) and single-pass (initial) behaviors may
be level sensitive and/or edge sensitive.

Edge sensitive:

always @(posedge clock)
q <= data;
Level sensitive:

always @ (enable or data)
if (enable) q = data

Data Types: Nets and Registers

Nets: Establish structural connectivity between
instantiated primitives and/or modules; may be tar-
get of a continuous assignment; e.g., wire, tri, wand,
WOr.

Value is determined during simulation by the dri-
ver of the net; e.g.,a primitive or a continuous assign-
ment. (Example: wire Y = A + B.)

Registers: Store information and retain value until
reassigned.

Value is determined by an assignment made by a
procedural statement.

Value is retained until a new assignment is made;
e.g..reg, integer, real, realtime, time.

Example:
always @ (posedge clock)
if (reset) q_out <=0;
else q_out <= data_in;

Procedural Statements

Describe logic abstractly; statements execute
sequentially to assign value to variables.

if (expression_is_true) statement_1; else
statement_2;

case (case_expression)

case_item: statement;

default: statement;

endcase

for (conditions) statement;

repeat constant_expression statement;
while (expression_is_true) statement;
forever statement;

fork statements join // execute in parallel

Assignments

Continuous: Continuously assigns the value of an
expression to a net.

Procedural (Blocked): Uses the = operator; exe-
cutes statements sequentially: a statement cannot
execute until the preceding statement completes
execution. Value is assigned immediately.

Procedural (Nonblocking): Uses the <= opera-
tor; executes statements concurrently, independent
of the order in which they are listed. Values are
assigned concurrently.

Procedural (Continuous):
assign ... deassign overrides procedural assignments

to a net.

force ... release overrides all other assignments to a net
or a register.

Operators

concatenation
arithmetic

% modulus

>>=< <= relational

! logical negation
&& logical and

I logical or

== logical equality

1= logical inequality
== case equality

== case inequality

> bitwise negation

& bitwise and

| bitwise or

bitwise exclusive-or
bitwise equivalence
& reduction and

~& reduction nand

or

~| reduction nor
reduction exclusive-or
reduction xnor

<< left shift

> right shift
conditional

or Event or

(AN

+ =%/

~ or ~

Specify Block

Example: Module Path Delays

specify

/| specparam declarations (min: typ: max)
specparamt_r = 3;4:5, t_f=4:5:6;
(A,B)*>Y)= (t_r, t_f); /1 full
(Bus_1=>Bus_1) = (t_r, t_f); // parallel

if (state == S0) (a, b *>y) = 2; // state dep
(posedge clk => (y -: d_in)) = (3. 4); // edge
endspecify

Example: Timing Checks

specify
specparam t_setup = 3:4:5, t_hold = 4:5:6;

$setup (data, posedge clock, t_setup);
$hold (posedge clock, data, t_hold);
endspecify

Memory
Declares an array of words.

Example: Memory declaration and readout

module memory_read_display();
reg [31: 0] mem_array [1: 1024];
integer k;

Advanced Digital Design
with the Verilog HDL

PrRENTICE HALL XILINX DESIGN SERIES

CILETTI
CILETTI

MaNo & KIME
SANDIGE
WAKERLY
XILINX

Y ALAMANCHILI

Modeling, Synthesis, and Rapid Prototyping with Verilog HDL
Advanced Digital Design with the Verilog HDL

Logic and Computer Design Fundamentals, 2/e

Digital Design Essentials

Digital Design Principles and Practices, 3/e

Xilinx Student Edition: Foundation Series Software
Introductory VHD L: From Simulation to Synthesis

Preface

Simplify, Clarify, and Verify

Behavioral modeling with a hardware description language (HDL) is the key to modern design
of application-specific integrated circuits (ASICs). Today, most designers use an HDL-based de-
sign method to create a high-level, language-based, abstract description of a circuit, synthesize a
hardware realization in a selected technology, and verify its functionality and timing.

Students preparing to contribute to a productive design team must know how to use an
HDL at key stages of the design flow. Thus, there is a need for a course that goes beyond the
basic principles and methods learned in a first course in digital design. This book is written for
such a course.

Many books discussing HDLs are now available, but most are oriented toward robust ex-
planations of language syntax, and are not well-suited for classroom use. Our focus is on design
methodology enabled by an HDL.

Our goal in this book is to build on a student’s background from a first course in logic de-
sign by (1) reviewing basic principles of combinational and sequential logic, (2) introducing the
use of HDLs in design, (3) emphasizing descriptive styles that will allow the reader to quickly de-
sign working circuits suitable for ASICs and/or field-programmable gate array (FPGA) imple-
mentation, and (4) providing in-depth design examples using modern design tools. Readers will
be encouraged to simplify, clarify, and verify their designs.

The widely used Verilog hardware description language (IEEE Standard 1364) serves as a
common framework supporting the design activities treated in this book, but our focus is on de-
veloping, verifying, and synthesizing designs of digital circuits, not on the Verilog language. Most
students taking a second course in digital design will be familiar with at least one programming
language and will be able to draw on that background in reading this textbook. We cover only
the core and most widely used features of Verilog. In order to emphasize using the language in a
synthesis-oriented design environment, we have purposely placed many details, features, and ex-
planations of syntax in the Appendices for reference on an “as-needed” basis.

Most entry-level courses in digital design introduce state machines, state-transition graphs,
and algorithmic-state machine (ASM) charts. We make heavy use of ASM charts and demonstrate
their utility in developing behavioral models of sequential machines. The important problem of

Advanced Digital Design with the Verilog HDL

designing a finite-state machine to control a complex datapath in a digital machine is treated in-
depth with ASMD charts (i.e., ASM charts annotated to display the register operations of the
controlled datapath). The design of a reduced intruction-set computer central processing unit
(RISC CPU) and other important hardware units are given as examples. Our companion web-
site includes the RISC machine’s source code and an assembler that can be used to develop pro-
grams for applications. The machine also serves as a starting point for developing a more robust
instruction set and architectural variants.

The Verilog language is introduced in an integrated, but selective manner, only as needed
to support design examples. The text has a large set of examples illustrating how to address the
key steps in a very large scale integrated (VLSI) circuit design methodology using the Verilog
HDL. Examples are complete, and include source code that has been verified with the Silos-IIT
simulator to be correct. Source code for all of the examples will be available (with important test
suites) at our website.

The Intended Audience

This book is for students in an advanced course in digital design, and for professional engineers in-
terested in learning Verilog by example, in the context of its use in the design flow of modern inte-
grated circuits. The level of presentation is appropriate for seniors and first-year graduate
students in electrical engineering, computer engineering, and computer science, as well as for
professional engineers who have had an introductory course in logic design. The book presumes
a basic background in Boolean algebra and its use in logic circuit design and a familiarity with
finite-state machines. Building on this foundation, the book addresses the design of several im-
portant circuits used in computer systems, digital signal processing, image processing, data
transfer across clock domains, built-in self-test (BIST), and other applications. The book covers
the key design problems of modeling, architectural tradeoffs, functional verification, timing
analysis, test generation, fault simulation, design for testability, logic synthesis, and postsynthesis
verification.

Special Features of the Book

¢ Begins with a brief review of basic principles in combinational and sequential logic
¢ Focuses on modern digital design methodology

¢ [llustrates and promotes a synthesis-ready style of register transfer level (RTL) and algorith-
mic modeling with Verilog

¢ Demonstrates the utility of ASM charts for behavioral modeling

¢ In-depth treatment of algorithms and architectures for digital machines (e.g., an image
processor, digital filters and circular buffers)

e In-depth treatment of synthesis for cell-based ASICs and FPGAs

* A practical treatment of timing analysis, fault simulation, testing, and design for testability,
with examples

¢ Comprehensive treatment of behavioral modeling

e Comprehensive design examples, including a RISC machine and datapath controller
¢ Numerous graphical illustrations

* Provides several problems with a wide range of difficulty after each chapter

¢ Contains a worked example with JTAG and BIST for testing

Preface

e Contains over 250 fully verified examples
¢ An indexed list of all models developed in the examples

e A set of Xilinx FPGA-based laboratory-ready exercises linked to the book (e.g., arithmetic
and logic unit [ALU], a programmable lock, a key pad scanner with a FIFO, a serial communi-
cations link with error correction, an SRAM controller, and first in, first out [FIFO] memory)

¢ Contains an up-to-date chapter on programmable logic device (PLDs) and FPGAs

¢ Contains a packaged CD-ROM with the popular Silos-III Verilog design environment and
simulator and the Xilinx integrated synthesis environment (ISE) synthesis tool for FPGAs

¢ Contains an Appendix with full formal syntax of the Verilog HDL
e Covers major features of Verilog 2001, with examples
¢ Supported by an ongoing website containing:

1. Source files of models developed in the examples

2. Source files of testbenches for simulating examples

3. An Instructor’s Classroom Kit containing transparency files for a course based on the subject

matter

4. Solutions to selected problems

5. Jump-start tutorials helping students get immediate results with the Silos-III simulation envi-
ronment, the Xilinx FPGA synthesis tool, the Synopsys synthesis tools, and the Synopsys
Prime Time static timing analyzer

. ASIC standard-cell library with synthesis and timing database

. Answers to frequently asked questions (FAQs)

. Clever examples submitted by readers

O 00 3 D

. Revisions

Sequences for Course Presentation

The material in the text begins with a review of combinational and sequential logic design, but
then progresses in the order dictated by the design flow for an ASIC or an FPGA. Chapters 1 to 6
treat design topics through synthesis, and should be covered in order, but Chapters 7 to 10 can be
covered in any order. The homework exercises are challenging, and the laboratory-ready
Xilinx-based exercises are suitable for a companion laboratory or for end-of-semester projects.
Chapter 10 presents several architectures for arithmetic operations, affording a diversity of cov-
erage. Chapter 11 treats postsynthesis design validation, timing analysis, fault simulation, and de-
sign for testability. The coverage of these topics can be omitted, depending on the level and focus
of the course. Tools supporting Verilog 2001 are emerging, so an appendix discusses and illus-
trates the important new features of the language.

Chapter Descriptions

Chapter 1 briefly discusses the role of HDLs in design flows for cell-based ASICs and FPGA:s.
Chapters 2 and 3 review mainstream topics that would be covered in a first course in digital design,
using classical methods (i.e. Karnaugh maps). This material will refresh the reader’s background,
and the examples will be used later to introduce HDL-based methods of design. Chapters 4 and 5

Advanced Digital Design with the Verilog HDL

introduce modeling of combinational and sequential logic with the Verilog HDL, and place em-
phasis on coding styles that are used in behavioral modeling. Chapter 6 addresses cell-based syn-
thesis of ASICs, and introduces synthesis of combinational and sequential logic. Here we pursue
two main objectives: (1) present synthesis-friendly coding styles, and (2) form a foundation that
will enable the reader to anticipate the results of synthesis, especially when synthesizing sequen-
tial machines. Many sequential machines are partitioned into a datapath and a controller.
Chapter 7 covers examples that illustrate how to design a controller for a datapath. The designs
of a simple RISC CPU and a UART" serve as platforms for the subject matter. Chapter 8 covers
PLDs, complex PLDs (CPLDs), ROMs, and static random-access memories (SRAMs), then ex-
pands the synthesis target to include FPGAs. Verilog has been used extensively to design com-
puters and signal processors. Chapter 9 treats the modeling and synthesis of computational units
and algorithms found in computer architectures, digital filters, and other processors. Chapter 10
develops and refines algorithms and architectures for the arithmetic units of digital machines. In
Chapter 11 we use the Verilog HDL in conjunction with fault simulators and timing analyzers to
revisit a selection of previously designed machines and consider performance/timing issues and
testability, to complete the treatment of design flow tasks that rely heavily on designer interven-
tion. Chapter 11 models the test access port (TAP) controller defined by the IEEE 1149.1 stan-
dard (commonly known as the JTAG standard), and presents an example of its use. Another
elaborate example covers built-in self test (BIST).

Acknowledgments

The author is grateful for the support of colleagues and students who expanded his vision of
Verilog and contributed to this textbook. The reviewers of the original manuscript provided en-
couragement, critical judgment, and many helpful suggestions. Stu Sutherland helped the au-
thor gain a deeper appreciation for the issue of race conditions that can creep into the models
of a digital system. These insights led to the disciplined style of adhering to nonblocking assign-
ments for modeling edge-sensitive behavior and blocked assignments for modeling level-sensi-
tive behavior. I owe a debt of gratitude to Dr. Jim Tracy and Dr. Rodger Ziemer, who supported
my efforts to develop courses in VLSI circuit design; to Bill Fuchs, who introduced me to the
Silos-III Verilog simulator from Simucad, Inc., and placed a user-friendly design environment in
the hands of our students. Kirk Sprague and Scott Kukel were helpful in developing a Hamming
encoder to work with the UART. Cris Hagan’s thesis led to the models presented in Chapter 9
for decimators and other functional units found in digital signal processors. Rex Anderson
proofread several chapters and scrubbed down my work. Terry Hansen and Lisa Horton provid-
ed the inspiration for the coffee vending machine example, and developed the assembler that
supports the RISC CPU. Dr. Greg Sajdak developed material relating chip defects to test cover-
age and process yield. Dr. Bruce Harmon provided material for a FIR filter example. My editors,
Tom Robbins and Eric Frank, have been a delight to work with. They supported the concept, en-
couraged my work and guided this book through the production process. My deep thanks to all
of you.

"Universal asynchronous receiver and transmitter (UART), a circuit used in data transmission between
systems.

Preface

Dedication

This book is dedicated to the memory of Sr. Laurencia Rihn, RSM, and Fr. Jerry Wilson, CSC.
My life has been shaped by their faith, encouragement, and love. To my wife, Jerilynn, and our
children, Monica, Lucy, Rebecca, Christine, and Michael and their spouses, Mike McCormick,
David Steigerwald, Peter Van Dusen, and Michelle Puhr Ciletti, and our grandchildren, Michael,
Katherine, Brigid, David, Jackson, Samantha, Peter, Anthony, and Matthew—thank you for the
journey and the love we’ve shared.

CHAPTER 1 Introduction to Digital
Design Methodology

Classical design methods relied on schematics and manual methods to design a circuit,
but today computer-based languages are widely used to design circuits of enormous
size and complexity. There are several reasons for this shift in practice. No team of en-
gineers can correctly design and manage, by manual methods, the details of state-of-
the-art integrated circuits (ICs) containing several million gates, but using hardware
description languages (HDLs) designers easily manage the complexity of large designs.
Even small designs rely on language-based descriptions, because designers have to
quickly produce correct designs targeted for an ever-shrinking window of opportunity
in the marketplace.

Language-based designs are portable and independent of technology, allowing
design teams to modify and re-use designs to keep pace with improvements in technology.
As physical dimensions of devices shrink, denser circuits with better performance can
be synthesized from an original HDL-based model.

HDLs are a convenient medium for integrating intellectual property (IP) from a
variety of sources with a proprietary design. By relying on a common design language,
models can be integrated for testing and synthesized separately or together, with a net
reduction in time for the design cycle. Some simulators also support mixed descriptions
based on multiple languages.

The most significant gain that results from the use of an HDL is that a working
circuit can be synthesized automatically from a language-based description, bypassing
the laborious steps that characterize manual design methods (e.g., logic minimization
with Karnaugh maps).

HDL-based synthesis is now the dominant design paradigm used by industry.
Today, designers build a software prototype/model of the design, verify its functionality,
and then use a synthesis tool to automatically optimize the circuit and create a netlist
in a physical technology.

Library of Congress Cataloging-in-Publication Data

Ciletti, Michael D.
Advanced digital design with Verilog HDL / Michael Ciletti.-- 1st ed.
p. cm. -- (Prentice Hall Xilinx design series)
Includes bibliographical references and index.
ISBN 0-13-089161-4
1. Digital electronics. 2. Logic circuits--Computer-aided design. 3. Verilog (Computer
hardware description language) I. Title. II. Series.

TK7868.D5 .C48 2002
621.39'5--dc21 2002074816

Vice President and Editorial Director, ECS: Marcia J. Horton
Publisher: Tom Robbins

Editorial Assistant: Jody McDonnell

Vice President and Director of Production and Manufacturing, ESM: David W. Riccardi
Executive Managing Editor: Vince O’Brien

Managing Editor: David A. George

Production Editor: Kevin Bradley

Director of Creative Services: Paul Belfanti

Creative Director: Carole Anson

Art Director: Jayne Conte

Cover Designer: Bruce Kenselaar

Art Editor: Greg Dulles

Manufacturing Manager: Trudy Pisciotti

Manufacturing Buyer: Lynda Castillo

Marketing Manager: Holly Stark

Prentice ©2003 by Pearson Education, Inc.
Pearson Education, Inc.
Upper Saddle River, NJ 07458

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writ-
ing from the publisher.

Hall

——

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the
development, research, and testing of the theories and programs to determine their effectiveness. The author and pub-
lisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation con-
tained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages
in connection with, or arising out of, the furnishing, performance, or use of these programs.

Silos and Simucad are registered trademarks of Simucad, Inc., 32970 Alvarado-Niles Road, Union City, CA 94587.
Verilog is a registered trademark of Cadence Design Systems, Inc., 2655 Seely Avenue, San Jose, CA 95134.

Printed in the United States of America
109 8 7 6 5 4 3

ISBN 0-13-0891kL-Y4

Pearson Education Ltd., London

Pearson Education Australia Pty. Ltd., Sydney

Pearson Education Singapore, Pte. Ltd.

Pearson Education North Asia Ltd., Hong Kong
Pearson Education Canada, Inc., Toronto

Pearson Educacién de Mexico, S.A. de C.V.

Pearson Education—Japan, Tokyo

Pearson Education Malaysia, Pte. Ltd.

Pearson Education, Inc., Upper Saddle River, New Jersey

Contents

Preface xvii
Simplify, Clarify, and Verify xviii

1 Introduction to Digital Design Methodology 1

1.1 Design Methodology—An Introduction 2
11.1 Design Specification 4
1.1.2 Design Partition 4
1.1.3 Design Entry 4
1.1.4 Simulation and Functional Verification 5
1.1.5 Design Integration and Verification 6
1.1.6 Presynthesis Sign-Off 6
1.1.7 Gate-Level Synthesis and Technology Mapping 6
1.1.8 Postsynthesis Design Validation 7
1.1.9 Postsynthesis Timing Analysis 8
1.1.10 Test Generation and Fault Simulation 8
1.1.11 Placement and Routing 8
1.1.12 Physical and Electrical Design Rules 9
1.1.13 Parasitic Extraction 9
1.1.14 Design Sign-Off 9

1.2 ICTechnology Options 9

1.3 Overview 11

References 11

Contents

2 Review of Combinational Logic Design 13

21

22
2.3

24

2.5

2.6

References

Combinational Logic and Boolean Algebra 13

211
2:1.2
213

ASIC Library Cells 13
Boolean Algebra 16
DeMorgan’s Laws 18

Theorems for Boolean Algebraic Minimization 18
Representation of Combinational Logic 21

231
2.32

Sum of Products Representation 23
Product-of-Sums Representation 26

Simplification of Boolean Expressions 27

241
242
243
244
245

Simplification with Exclusive-Or 36
Karnaugh Maps (SOP Form) 36
Karnaugh Maps (POS Form) 39
Karnaugh Maps and Don’t-Cares 40
Extended Karnaugh Maps 41

Glitches and Hazards 42

2:5.1
252
253
254
2.55

Elimination of Static Hazards (SOP Form) 44

Summary: Elimination of Static Hazards in Two-Level Circuits

Static Hazards in Multilevel Circuits 49
Summary: Elimination of Hazards in Multilevel Circuits
Dynamic Hazards 52

Building Blocks for Logic Design 55

261
262
263
2.64
2.6.5
2.6.6
2.6.7

Problems

NAND-NOR Structures 55
Multiplexers 60
Demultiplexers 61
Encoders 62

Priority Encoder 63
Decoder 64
Priority Decoder 66
67

67

3 Fundamentals of Sequential Logic Design 69

31

32

Storage Elements 69

311
312

Latches 70
Transparent latches 71

Flip-Flops 71

321
322
3.2.3
324

D-Type Flip-Flop 71
Master-Slave Flip-Flop 73
J-K Flip-Flop 75

T Flip-Flop 75

52

48

Contents

3.3 Busses and Three-State Devices 76

3.4 Design of Sequential Machines 80

3.5 State-Transition Graphs 82

3.6 Design Example: BCD to Excess-3 Code Converter 84

3.7 Serial-Line Code Converter for Data Transmission 89
37.1 A Mealy-Type FSM for Serial Line-Code Conversion 92
3.7.2 A Moore-Type FSM for Serial Line-Code Conversion 93

3.8 State Reduction and Equivalent States 95

References 99

Problems 100

4 Introduction to Logic Design with Verilog 103

4.1 Structural Models of Combinational Logic 104
4.1.1 Verilog Primitives and Design Encapsulation 104
4.1.2 Verilog Structural Models 107
4.1.3 Module Ports 107
414 Some Language Rules 108
4.1.5 Top-Down Design and Nested Modules 108
4.1.6 Design Hierarchy and Source-Code Organization 111
41.7 Vectors in Verilog 113
4.1.8 Structural Connectivity 114
4.2 Logic Simulation, Design Verification, and Test Methodology 119
42.1 Four-Valued Logic and Signal Resolution in Verilog 119
422 Test Methodology 120
4.2.3 Signal Generators for Testbenches 123
424 Event-Driven Simulation 125
425 Testbench Template 125
42.6 Sized Numbers 126
43 Propagation Delay 126
431 Inertial Delay 129
432 Transport Delay 131
4.4 Truth Table Models of Combinational and Sequential Logic with
Verilog 132
References 140
Problems 140

5 Logic Design with Behavioral Models of Combinational
and Sequential Logic 143

51 Behavioral Modeling 143

5.2 A Brief Look at Data Types for Behavioral Modeling 145

5.3 Boolean-Equation-Based Behavioral Models of
Combinational Logic 145

viii Contents

5.4 Propagation Delay and Continuous Assignments 148
5.5 Latches and Level-Sensitive Circuits in Verilog 150
5.6 Cyclic Behavioral Models of Flip-Flops and Latches 153
5.7 Cyclic Behavior and Edge Detection 154
5.8 A Comparision of Styles for Behavioral Modeling 156
5.8.1 Continuous-Assignment Models 156
5.82 Dataflow/RTL Models 158
5.8.3 Algorithm-Based Models 162
5.84 Port Names: A Matter of Style 164
5.8.5 Simulation with Behavioral Models 164
5.9 Behavioral Models of Multiplexers, Encoders, and Decoders 165
5.10 Dataflow Models of a Linear-Feedback Shift Register 174
5.11 Modeling Digital Machines with Repetitive Algorithms 176
5.11.1 Intellectual Property Reuse and Parameterized Models 181
5.11.2 Clock Generators 183
5.12 Machines with Multicycle Operations 185
5.13 Design Documentation with Functions and Tasks: Legacy
or Lunacy? 186
5.13.1 Tasks 187
5.13.2 Functions 189
5.14 Algorithmic State Machine Charts for Behavioral Modeling 190
5.15 ASMD Charts 194
5.16 Behavioral Models of Counters, Shift Registers, and Register Files 196
5.16.1 Counters 197
5.16.2 Shift Registers 203
5.16.3 Register Files and Arrays of Registers (Memories) 207
5.17 Switch Debounce, Metastability, and Synchronizers for Asynchronous Signals 210
5.18 Design Example: Keypad Scanner and Encoder 216
References 224
Problems 225

6 Synthesis of Combinational and Sequential Logic 233

6.1 Introduction to Synthesis 234
6.1.1 Logic Synthesis 235
6.1.2 RTL Synthesis 243
6.1.3 High-Level Synthesis 244
6.2 Synthesis of Combinational Logic 245
6.2.1 Synthesis of Priority Structures 250
6.2.2 Exploiting Logical Don’t-Care Conditions 251
6.2.3 ASIC Cells and Resource Sharing 256
6.3 Synthesis of Sequential Logic with Latches 258
6.3.1 Accidental Synthesis of Latches 260
6.3.2 Intentional Synthesis of Latches 264

Contents

6.4 Synthesis of Three-State Devices and Bus Interfaces 268
6.5 Synthesis of Sequential Logic with Flip-Flops 271
6.6 Synthesis of Explicit State Machines 275
6.6.1 Synthesis of a BCD-to-Excess-3 Code Converter 275
6.6.2 Synthesis of a Mealy-Type NRZ-to-Manchester Line Code
Converter 280
6.6.3 Synthesis of a Moore-Type NRZ-to-Manchester Line Code
Converter 282
6.6.4 Synthesis of a Sequence Recognizer 283
6.7 Registered Logic 292
6.8 State Encoding 299
6.9 Synthesis of Implicit State Machines, Registers, and Counters 301
6.9.1 Implicit State Machines 301
6.9.2 Synthesis of Counters 302
6.9.3 Synthesis of Registers 304
6.10 Resets 309
6.11 Synthesis of Gated Clocks and Clock Enables 313
6.12 Anticipating the Results of Synthesis 314
6.12.1 Synthesis of Data Types 314
6.12.2 Operator Grouping 314
6.12.3 Expression Substitution 316
6.13 Synthesis of Loops 319
6.13.1 Static Loops without Embedded Timing Controls 319
6.13.2 Static Loops with Embedded Timing Controls 322
6.13.3 Nonstatic Loops without Embedded Timing Controls 326
6.13.4 Nonstatic Loops with Embedded Timing Controls 328
6.13.5 State-Machine Replacements for Unsynthesizable Loops 331
6.14 Design Traps to Avoid 338
6.15 Divide and Conquer: Partitioning a Design 338
References 339
Problems 339

7 Design and Synthesis of Datapath Controllers 347

7.1 Partitioned Sequential Machines 347
7.2 Design Example: Binary Counter 349
7.3 Design and Synthesis of a RISC Stored-Program Machine 355

7.3.1 RISC SPM: Processor 357

732 RISCSPM:ALU 357

7.3.3 RISC SPM: Controller 357

7.3.4 RISC SPM: Instruction Set 358

7.3.5 RISC SPM: Controller Design 360

73.6 RISC SPM: Program Execution 375
7.4 Design Example: UART 378

74.1 UART Operation 379

