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Summary of Key Verilog Features
(IEEE 1364)

Module

Encapsulates functionality; may be nested to any
depth.

module module_name (list of ports);
Declarations
Port modes: input, output, inout identifier;
Nets (e.g., wire A[3:0];)
Register variable (e.g., reg B[31: 0];)
Constants: (e.g. parameter size = 8;)
Named events
Continuous assignments

(e.g. assign sum =A + B;)
Behaviors always (cyclic), initial (single-pass)

specify ... endspecify
function ... endfunction
task ... endtask
Instantiations

primitives

modules

endmodule

Multi Input Primitives
(Each input is a scalar)

and (out, iny, iny, ... iny);
nand (out, in4, iny, ... iny);
or (out,iny, iny, ... iny);
nor (out, ing, iny, ... iny);
xor (out, iny, iny, ... iny);
xnor (out, ing, iny, ... iny);

Multi-Output Primitives

/] buffer
I inverter

buf (outy, out, ..., outy, in);
not (outy, out,, ..., outy, in);

Three-State Multi-Output Primitives
bufif0 (out, in, control); bufif1 (out, in, control);
notif0 (out, in, control); notif1 (out, in, control);
Pullups and Pulldowns

pullup (out_y); pulldown (out_y);

Propagation Delays

Single delay: and #3 G1 (y, a, b, c);
Rise/fall: and #(3, 6) G2 (y a, b, c);
Rise/fall/turnoff: bufif0 #(3, 6, 5) (y, x_in, en);
Min:typ:Max:  bufif1 #(3:4:5, 4:5:6, 7,8:9)
(y, x_in, en);

Command line options for single delay value simulation:
+maxdelays, +typdelays, +mindelays

Example: verilog +mindelays testbench.v

Concurrent Behavioral Statements

May execute a level-sensitive assignment of value
to a net (keyword: assign), or may execute the state-
ments of a cyclic (keyword: always) or single-pass
(keyword: initial) behavior. The statements execute
sequentially, subject to level-sensitive or edge-sen-
sitive event control expressions.

Syntax:

assign net_name = [expression];
always begin [procedural statements] end
initial begin [procedural statements] end

Cyclic (always) and single-pass (initial) behaviors may
be level sensitive and/or edge sensitive.

Edge sensitive:

always @(posedge clock)
q <= data;
Level sensitive:

always @ (enable or data)
if (enable) q = data

Data Types: Nets and Registers

Nets: Establish structural connectivity between
instantiated primitives and/or modules; may be tar-
get of a continuous assignment; e.g., wire, tri, wand,
WOr.




Value is determined during simulation by the dri-
ver of the net; e.g.,a primitive or a continuous assign-
ment. (Example: wire Y = A + B.)

Registers: Store information and retain value until
reassigned.

Value is determined by an assignment made by a
procedural statement.

Value is retained until a new assignment is made;
e.g..reg, integer, real, realtime, time.

Example:
always @ (posedge clock)
if (reset) q_out <=0;
else q_out <= data_in;

Procedural Statements

Describe logic abstractly; statements execute
sequentially to assign value to variables.

if (expression_is_true) statement_1; else
statement_2;

case (case_expression)

case_item: statement;

default: statement;

endcase

for (conditions ) statement;

repeat constant_expression statement;
while (expression_is_true) statement;
forever statement;

fork statements join // execute in parallel

Assignments

Continuous: Continuously assigns the value of an
expression to a net.

Procedural (Blocked): Uses the = operator; exe-
cutes statements sequentially: a statement cannot
execute until the preceding statement completes
execution. Value is assigned immediately.

Procedural (Nonblocking): Uses the <= opera-
tor; executes statements concurrently, independent
of the order in which they are listed. Values are
assigned concurrently.

Procedural (Continuous):
assign ... deassign overrides procedural assignments

to a net.

force ... release overrides all other assignments to a net
or a register.

Operators

concatenation
arithmetic

% modulus

>>=< <= relational

! logical negation
&& logical and

I logical or

== logical equality

1= logical inequality
== case equality

== case inequality

> bitwise negation

& bitwise and

| bitwise or

bitwise exclusive-or
bitwise equivalence
& reduction and

~& reduction nand

or

~| reduction nor
reduction exclusive-or
reduction xnor

<< left shift

> right shift
conditional

or Event or

(AN

+ =%/

~ or ~

Specify Block

Example: Module Path Delays

specify

/| specparam declarations (min: typ: max)
specparamt_r = 3;4:5, t_f=4:5:6;
(A,B)*>Y)= (t_r, t_f); /1 full
(Bus_1=>Bus_1) = (t_r, t_f); // parallel

if (state == S0) (a, b *>y) = 2; // state dep
(posedge clk => (y -: d_in)) = (3. 4); // edge
endspecify

Example: Timing Checks

specify
specparam t_setup = 3:4:5, t_hold = 4:5:6;

$setup (data, posedge clock, t_setup);
$hold (posedge clock, data, t_hold);
endspecify

Memory
Declares an array of words.

Example: Memory declaration and readout

module memory_read_display();
reg [31: 0] mem_array [1: 1024];
integer k;
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Preface

Simplify, Clarify, and Verify

Behavioral modeling with a hardware description language (HDL) is the key to modern design
of application-specific integrated circuits (ASICs). Today, most designers use an HDL-based de-
sign method to create a high-level, language-based, abstract description of a circuit, synthesize a
hardware realization in a selected technology, and verify its functionality and timing.

Students preparing to contribute to a productive design team must know how to use an
HDL at key stages of the design flow. Thus, there is a need for a course that goes beyond the
basic principles and methods learned in a first course in digital design. This book is written for
such a course.

Many books discussing HDLs are now available, but most are oriented toward robust ex-
planations of language syntax, and are not well-suited for classroom use. Our focus is on design
methodology enabled by an HDL.

Our goal in this book is to build on a student’s background from a first course in logic de-
sign by (1) reviewing basic principles of combinational and sequential logic, (2) introducing the
use of HDLs in design, (3) emphasizing descriptive styles that will allow the reader to quickly de-
sign working circuits suitable for ASICs and/or field-programmable gate array (FPGA) imple-
mentation, and (4) providing in-depth design examples using modern design tools. Readers will
be encouraged to simplify, clarify, and verify their designs.

The widely used Verilog hardware description language (IEEE Standard 1364) serves as a
common framework supporting the design activities treated in this book, but our focus is on de-
veloping, verifying, and synthesizing designs of digital circuits, not on the Verilog language. Most
students taking a second course in digital design will be familiar with at least one programming
language and will be able to draw on that background in reading this textbook. We cover only
the core and most widely used features of Verilog. In order to emphasize using the language in a
synthesis-oriented design environment, we have purposely placed many details, features, and ex-
planations of syntax in the Appendices for reference on an “as-needed” basis.

Most entry-level courses in digital design introduce state machines, state-transition graphs,
and algorithmic-state machine (ASM) charts. We make heavy use of ASM charts and demonstrate
their utility in developing behavioral models of sequential machines. The important problem of
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designing a finite-state machine to control a complex datapath in a digital machine is treated in-
depth with ASMD charts (i.e., ASM charts annotated to display the register operations of the
controlled datapath). The design of a reduced intruction-set computer central processing unit
(RISC CPU) and other important hardware units are given as examples. Our companion web-
site includes the RISC machine’s source code and an assembler that can be used to develop pro-
grams for applications. The machine also serves as a starting point for developing a more robust
instruction set and architectural variants.

The Verilog language is introduced in an integrated, but selective manner, only as needed
to support design examples. The text has a large set of examples illustrating how to address the
key steps in a very large scale integrated (VLSI) circuit design methodology using the Verilog
HDL. Examples are complete, and include source code that has been verified with the Silos-IIT
simulator to be correct. Source code for all of the examples will be available (with important test
suites) at our website.

The Intended Audience

This book is for students in an advanced course in digital design, and for professional engineers in-
terested in learning Verilog by example, in the context of its use in the design flow of modern inte-
grated circuits. The level of presentation is appropriate for seniors and first-year graduate
students in electrical engineering, computer engineering, and computer science, as well as for
professional engineers who have had an introductory course in logic design. The book presumes
a basic background in Boolean algebra and its use in logic circuit design and a familiarity with
finite-state machines. Building on this foundation, the book addresses the design of several im-
portant circuits used in computer systems, digital signal processing, image processing, data
transfer across clock domains, built-in self-test (BIST), and other applications. The book covers
the key design problems of modeling, architectural tradeoffs, functional verification, timing
analysis, test generation, fault simulation, design for testability, logic synthesis, and postsynthesis
verification.

Special Features of the Book

¢ Begins with a brief review of basic principles in combinational and sequential logic
¢ Focuses on modern digital design methodology

¢ [llustrates and promotes a synthesis-ready style of register transfer level (RTL) and algorith-
mic modeling with Verilog

¢ Demonstrates the utility of ASM charts for behavioral modeling

¢ In-depth treatment of algorithms and architectures for digital machines (e.g., an image
processor, digital filters and circular buffers)

e In-depth treatment of synthesis for cell-based ASICs and FPGAs

* A practical treatment of timing analysis, fault simulation, testing, and design for testability,
with examples

¢ Comprehensive treatment of behavioral modeling

e Comprehensive design examples, including a RISC machine and datapath controller
¢ Numerous graphical illustrations

* Provides several problems with a wide range of difficulty after each chapter

¢ Contains a worked example with JTAG and BIST for testing
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e Contains over 250 fully verified examples
¢ An indexed list of all models developed in the examples

e A set of Xilinx FPGA-based laboratory-ready exercises linked to the book (e.g., arithmetic
and logic unit [ALU], a programmable lock, a key pad scanner with a FIFO, a serial communi-
cations link with error correction, an SRAM controller, and first in, first out [FIFO] memory)

¢ Contains an up-to-date chapter on programmable logic device (PLDs) and FPGAs

¢ Contains a packaged CD-ROM with the popular Silos-III Verilog design environment and
simulator and the Xilinx integrated synthesis environment (ISE) synthesis tool for FPGAs

¢ Contains an Appendix with full formal syntax of the Verilog HDL
e Covers major features of Verilog 2001, with examples
¢ Supported by an ongoing website containing:

1. Source files of models developed in the examples

2. Source files of testbenches for simulating examples

3. An Instructor’s Classroom Kit containing transparency files for a course based on the subject

matter

4. Solutions to selected problems

5. Jump-start tutorials helping students get immediate results with the Silos-III simulation envi-
ronment, the Xilinx FPGA synthesis tool, the Synopsys synthesis tools, and the Synopsys
Prime Time static timing analyzer

. ASIC standard-cell library with synthesis and timing database

. Answers to frequently asked questions (FAQs)

. Clever examples submitted by readers

O 00 3 D

. Revisions

Sequences for Course Presentation

The material in the text begins with a review of combinational and sequential logic design, but
then progresses in the order dictated by the design flow for an ASIC or an FPGA. Chapters 1 to 6
treat design topics through synthesis, and should be covered in order, but Chapters 7 to 10 can be
covered in any order. The homework exercises are challenging, and the laboratory-ready
Xilinx-based exercises are suitable for a companion laboratory or for end-of-semester projects.
Chapter 10 presents several architectures for arithmetic operations, affording a diversity of cov-
erage. Chapter 11 treats postsynthesis design validation, timing analysis, fault simulation, and de-
sign for testability. The coverage of these topics can be omitted, depending on the level and focus
of the course. Tools supporting Verilog 2001 are emerging, so an appendix discusses and illus-
trates the important new features of the language.

Chapter Descriptions

Chapter 1 briefly discusses the role of HDLs in design flows for cell-based ASICs and FPGA:s.
Chapters 2 and 3 review mainstream topics that would be covered in a first course in digital design,
using classical methods (i.e. Karnaugh maps). This material will refresh the reader’s background,
and the examples will be used later to introduce HDL-based methods of design. Chapters 4 and 5
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introduce modeling of combinational and sequential logic with the Verilog HDL, and place em-
phasis on coding styles that are used in behavioral modeling. Chapter 6 addresses cell-based syn-
thesis of ASICs, and introduces synthesis of combinational and sequential logic. Here we pursue
two main objectives: (1) present synthesis-friendly coding styles, and (2) form a foundation that
will enable the reader to anticipate the results of synthesis, especially when synthesizing sequen-
tial machines. Many sequential machines are partitioned into a datapath and a controller.
Chapter 7 covers examples that illustrate how to design a controller for a datapath. The designs
of a simple RISC CPU and a UART" serve as platforms for the subject matter. Chapter 8 covers
PLDs, complex PLDs (CPLDs), ROMs, and static random-access memories (SRAMs), then ex-
pands the synthesis target to include FPGAs. Verilog has been used extensively to design com-
puters and signal processors. Chapter 9 treats the modeling and synthesis of computational units
and algorithms found in computer architectures, digital filters, and other processors. Chapter 10
develops and refines algorithms and architectures for the arithmetic units of digital machines. In
Chapter 11 we use the Verilog HDL in conjunction with fault simulators and timing analyzers to
revisit a selection of previously designed machines and consider performance/timing issues and
testability, to complete the treatment of design flow tasks that rely heavily on designer interven-
tion. Chapter 11 models the test access port (TAP) controller defined by the IEEE 1149.1 stan-
dard (commonly known as the JTAG standard), and presents an example of its use. Another
elaborate example covers built-in self test (BIST).
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CHAPTER 1 Introduction to Digital
Design Methodology

Classical design methods relied on schematics and manual methods to design a circuit,
but today computer-based languages are widely used to design circuits of enormous
size and complexity. There are several reasons for this shift in practice. No team of en-
gineers can correctly design and manage, by manual methods, the details of state-of-
the-art integrated circuits (ICs) containing several million gates, but using hardware
description languages (HDLs) designers easily manage the complexity of large designs.
Even small designs rely on language-based descriptions, because designers have to
quickly produce correct designs targeted for an ever-shrinking window of opportunity
in the marketplace.

Language-based designs are portable and independent of technology, allowing
design teams to modify and re-use designs to keep pace with improvements in technology.
As physical dimensions of devices shrink, denser circuits with better performance can
be synthesized from an original HDL-based model.

HDLs are a convenient medium for integrating intellectual property (IP) from a
variety of sources with a proprietary design. By relying on a common design language,
models can be integrated for testing and synthesized separately or together, with a net
reduction in time for the design cycle. Some simulators also support mixed descriptions
based on multiple languages.

The most significant gain that results from the use of an HDL is that a working
circuit can be synthesized automatically from a language-based description, bypassing
the laborious steps that characterize manual design methods (e.g., logic minimization
with Karnaugh maps).

HDL-based synthesis is now the dominant design paradigm used by industry.
Today, designers build a software prototype/model of the design, verify its functionality,
and then use a synthesis tool to automatically optimize the circuit and create a netlist
in a physical technology.
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