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PREFACE

The books in this series present leading-edge research in the field of computer research,
technology and applications. Each contribution has been carefully selected for inclusion based
on the significance of the research to the field. Summaries of all chapters are gathered at the
beginning of the book and an in-depth index is presented to facilitate access.

Digital electrical engineering is a non-formalized theory and one of the major causes of
this situation consists in the complexity of Mother Nature, things cannot be completely
different from those in medicine, for example. We are too restricted to finding quick solutions
to the problems that arise in order to take the time to strengthen a sound theoretical
foundation of the reasoning that we do. Obviously, the political, military, economical and
technological importance of digital electrical engineering is itself an obstacle in the spreading
of consolidated theories. In fact, the reader of such literature can remark the existing distance
from the deductive theories, the way that the mathematicians use them. Chapter 1 reproduces
a point of view that is considered to be representative in this direction belonging to L.
Rougier: ‘Reasoning is deductive or is not at all’.

One of the most important problems of hybrid systems is the reachability problem. As
this problem has been shown to be undecidable even for certain classes of linear hybrid
systems, the main focus of the hybrid systems literature appears to be to find effective semi-
decision procedures for this problem. Such an algorithmic approach involves finding methods
of computation and representation of reach sets of the continuous variables within a discrete
state of a hybrid system. In chapter 2, after presenting a brief introduction to hybrid systems
and reachability problem, the authors propose a computational method for obtaining the reach
sets of continuous variables in a hybrid system. In addition to this, they also describe a new
algorithm to over-approximate with polyhedra the reach sets of the continuous variables with
linear dynamics and polyhedral initial set. It also illustrates these algorithms with some
simple and interesting examples.

Symbolic computation in algebraic categories enable the automatic modeling of modern
algebra theories. On this theoretical background, chapter 3 introduces constructive and
algorithmic definitions for the basic concepts (category, domain, etc.) and for a number of
algebraic structures. Adopting a parameterized and object oriented approach, the categories
defined for the algebraic structures will be particularized in specific domains. Chapter 3
reveals the utility of the parameterized categorical approach by deriving a multivariate
polynomial category (over various coefficient domains), which is used by our Mathematica
implementation of Buchberger’s algorithms for determining the Grobner basis. These
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implementations are designed according to domain and category parameterization principles
and underline their advantages: operation protection, inheritance, generality, natural
extendibility. In particular, such an extension of Mathematica, a widely used symbolic
computation system, with a new type system has a certain practical importance.

Chapter 4 directs attentions to the effects of production experiences on the R&D
competition and innovations for the next generation product when the R&D knowledge is
accumulated by production experiences as well as by R&D expenditure. Based on the
numerical analyses of unique Nash strategies in the R&D race, we find that the challenger
invests more than the incumbent, and the difference between the challenger’s and the
incumbent’s investment rates increases with the marginal production experience (a rate at
which production experiences contribute to the R&D knowledge). However, an increase in
this difference is dominated by the increase in the marginal production experience itself, and
thus the incumbent has a higher probability to win the R&D race at any time point
(conditioned on no occurrence of innovations up to that time point) if the marginal production
experience is sufficiently large. Moreover, as the marginal production experience gets higher,
the rate of the overall R&D knowledge accumulation increases. The rapid innovations and the
persistent leadership in CPUs for personal computers and EPROM chips may be better
explained by this effects of production experiences on the R&D competition.



Preface

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Index

CONTENTS

Real Time Models of the Asynchronous
Circuits: The Delay Theory
Serban E. Viad

Approximate Computation of Reach Sets in Hybrid Systems
D. Ravi and R. K. Shyamasundar

Methods and Techniques for Defining
Parameterized Types in Mathematics
Alina Andreica

Production Experiences and Persistent
Leadership in R&D Competition
Shun-Chiao Chang and Sangin Park

vii

91

127

161

181



In: New Developments in Computer Science Research
Editor: Susan Shannon, pp. 1-90

ISBN 1-59454-256-2
© 2005 Nova Science Publishers, Inc.

Chapter 1

Real Time Models of the Asynchronous Circuits:
The Delay Theory

Serban E. Vlad
Oradea City Hall, P-ta Unirii, Nr. 1, 410100, Oradea, Romania
www.geocities.comy/serban_e vlad, serban_e vlad@yahoo.com

List of Abbreviations

SC Stability condition 6.1.1
DC Delay condition 6.2.1
CCgpc Consistency condition (of the bounded delay condition) 7.1.2
BDC Bounded delay condition 7.2.2
FDC Fixed delay condition 7.4.2
AIC Absolute inertial condition 8.1.2
AIDC Absolute inertial delay condition 8.2.1
CCgannc Consistency condition (of the bounded absolute inertial delay | 8.3.2
condition)
BAIDC Bounded absolute inertial delay condition 8.4.1
RIC Relative inertial condition 9.12
RIDC Relative inertial delay condition 9.2.1
CCsrine Consistency condition (of the bounded relative inertial delay | 9.3.2
condition)
BRIDC Bounded relative inertial delay condition 94.1
DBRIDC Deterministic bounded relative inertial delay condition 953
BDC’, AIC’, | Variants of BDC, AIC, RIC 10.1
RIC’
DBRIDC’, Variants of DBRIDC 10.2.2
SDBRIDC’
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1. Introduction

Digital electrical engineering is a non-formalized theory and one of the major causes of this
situation consists in the complexity of Mother Nature, things cannot be completely different from
those in medicine, for example. We are too restricted to finding quick solutions to the problems
that arise in order to take the time to strengthen a sound theoretical foundation of the reasoning
that we do. Obviously, the political, military, economical and technological importance of digital
electrical engineering is itself an obstacle in the spreading of consolidated theories.

In fact, the reader of such literature can remark the existing distance from the deductive
theories, the way that the mathematicians use them. We reproduce a point of view that we consider
to be representative in this direction belonging to L. Rougier: ‘Reasoning is deductive or is not at
all’.

The consequences of non-formalization are known. Many researchers do not give the right
importance to the scientific language and words like definition, theorem, proof are titles of
descriptive paragraphs rather than having the meaning that is accepted by the logicians. A
fascinating job is, in this context, the translation in a precise mathematical language of what is
intuitively, imprecisely explained with natural language by the engineers and this can be done in
several ways. Our work has many such examples, let’s just mention here the notion of inertia that
is important and confusing at the same time. By reading with a ball-point pen in our hand, we infer
that the inertia’s inertia is not inertia, a paradox that should end the discussion on the validity of a
theory. The theoretical construction continues however, without visible implications on the
subsequent results, by using the methods of the non-deductive investigations.

The purpose of delay theory is that of writing systems of equations and inequalities with
electrical signals, that model the behavior of the asynchronous circuits.

The (electrical) signals are the functions f: R —>{0,1} where R, the set of the real

numbers, is the time set. We ask that they:

e  be constant in the interval (—00,0) , with the variant that we have used elsewhere: be null
in the interval (—00,0), in other words 0 is the initial time instant
* beconstant on intervals [#',7") that are left closed and right open

® have a finite number of discontinuity points (i.e. a finite number of switches) in any
bounded interval.

The asynchronous circuits (also called asynchronous Systems, or asynchronous automata or
timed automata in literature) are these electrical devices that can be modeled by using signals.
The fundamental (asynchronous) circuit in delay theory is the delay circuit, also called delay

buffer, the circuit that computes the identity 1{0’1} and the fundamental notion is that of delay

condition, or shortly delay, the real time model of the delay circuit.

We show the way that the ‘inertia’s paradox’ has been solved. First, the definition of the
delays is given. Second, the pure delays are defined. Third, all the delays different from the pure
delays are considered to be by definition inertial. Fourth, the serial connection of the delays is their
composition, as binary relations. The serial connection of the inertial delays results in an inertjal
delay, but the type of inertia is likely to differ. The bounded delays have the nice property that,
under the serial connection, the delays remain bounded and thus the type of inertia remains the
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same; the absolute inertial delays are in the same situation. The relative inertial delays are not
closed under the serial connection, the ‘paradox’.
We shall describe now, informally, the work of the delay circuit.

(0.0) {—Z——a )
> d
©.0) (LD

Fig 1

We have noted with # : R — {0,1} its input and with x: R — {0,1} its output. Both u, x
are signals. In Fig 1, the couples of binary numbers, temporarily called states, represent values
(u(?),x(t)), with te R and a,b,c,d are the labels (= the names) of the transitions

(u(t"),x(2")) = (u("), x(¢")) . In such transitions, we suppose that #'< " and that "—¢' is a
small infinitesimal. A suitable notation for this is ¢'=¢"—0.
The real numbers 0 < dr,min < dr,max are given, the meaning of the index ‘»’ being that
of raise (switch from 0 to 1) of a signal, event symbolized by the validity of the equation
x(t-0)-x()=1
Dually ‘the real numbers 0 < df,min < df,max are given, the meaning of the index ‘f

being that of fall (switch from 1 to 0) of a signal and that event is symbolized by the validity of the
equation

x(1=0)-x(t) =1
We suppose that at the initial time instant #() = 0 the circuit is in the initial state (0,0) :
VE € (~o0,10), u(E) = 0
VE e (—0,19],x(§) =0

This state is stable, meaning that the delay circuit could remain indefinitely long there, if the
input is 0:

Vh>0,VEe(ty,tg +h),u(€)=0=>x(tg +h)=0
A switch of the input takes place at 7(
u(tg —0)-u(ty)=1

and the delay circuit follows the trajectory labeled a, i.e. (0,0) = (1,0). The hypothesis states
that both the input and the output remain constant in the interval [#,?])

VE et 1) u(E) =1

VEe[tg,1),x(6)=0
and the problem is to describe the behavior of the circuit at 71 . Three possibilities exist, those of

running one the transitions b, ¢, d , depending on the values of #; and u(#).
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b : itis necessarily run at #y if ] — tg < dr,min and if # switches from 1 to 0 at the time
instant #;
1o <ty <tg +d, min and u(ty —0)-u(t;)=1and x(t; - 0)- x(¢;)=0

The interpretation is that the circuit’s inertia did not allow a fast switch of x from 0 to 1
happen.

b,c: any of them is possible to be run at #; (x(#;) =0 for b and x(¢1) =1 for ¢) if

d, min S1 —1p < dr,max and if u switches from 1 to 0 at 7}

1o +dy min S <to +d, max and u(ty = 0)-u(t;)=1and x(t1 0)-x(¢;)=0
) +dr ,min <H <ty +dr max ana’u(tl -0)- u(tl)—land X(ll -0)- X(ll)——l

ift) —tg = dr,max and if # switches from 1 to 0 at #] , then ¢ is necessary

1 =ty +dy max and u(ty —0)-u(ty)=1and x(t; - 0)- x(t;) =1

d:if u(ty)=1, then it is possible at #; for d, ;min <1 —1g <d, max and it is

necessary at f1 for ) —tg = dr,max:

1o +dy min <t Sty +dy max and u(ty —0)-u(t;) =0 and x(t; - 0)- x(1}) =1
The intuitive description of the circuit continues by asking that the dual statements hold also,
as resulted by the replacement of ‘»’, 0, 1 with ‘/,1,0.

The circuit computes the identity on {0,1} because the states (0,0), (1,1) are stable and these
are the only stable states of the circuit.

A possible manner of describing the previous facts is given by the system

(u®) <x(t)< Ju®)

Eelt—dy maxt) Celt—d £ max 1)

x(t—0)-x(<  [u(@)

Eelt=dy min>t)

x(1 = 0)-x(¢) < uE)
éé[f_df,min:’)
and this might seem not quite obvious for the moment.
The chapter is organized in sections, numbered with 1, 2, 3, ... the sections have several
paragraphs: 2.1, 3.2, ... and the paragraphs are usually organized in subparagraphs: 2.1.1, 4.5.2,
. The important equations and inequalities have been numbered, as well as all the figures and
tables. The notation 3.2 (2) refers to equation or inequality (2) of paragraph 3.2 (that has no

subparagraphs, in this case) and the notation 4.1.2 (3) refers to equation or inequality (3) of the
subparagraph 2 from the paragraph 4.1.

In Section 2 we give several examples of models for the sake of creating intuition and this is a
presentation of our intentions. The theory starting with Section 3 is supposed to be self-contained.

In Section 3 we fix some fundamental concepts and notations on the R — {0,1} functions.

Section 4 defines the signals and gives some useful properties on them.
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In Section 5 we present the informal definitions of the delays, with long quotations from
several authors.

The sections that follow represent the core of this chapter. In Section 6 we define the delays,
as well as their determinism, order, time invariance, constancy, symmetry and serial connection.
Section 7 is dedicated to the bounded delays and in Sections 8, 9 we define and characterize the
absolute and the relative inertial conditions and delays. Section 10 shows some variants of the
concepts from Sections 7, 8, 9 and introduces a special form of deterministic delays. Section 11
closes the chapter with new examples and a generalization.

We thank in advance to all those that will want to bring corrections and improvements to our
results.

2. Motivating Examples

2.1 Example 1: The Delay Circuit

The symbol of the delay circuit is the next one
] l\\ x

Fig 2

We consider different possibilities of modelation of this circuit, a way to anticipate the facts
that will be presented later. #,x are R — {0,1} functions and moreover they are signals, with

constant values for any # <0 .
SC Stability’ (unbounded delays) If u is of the form
u(t) = u(t) L (~o0,19) () @ ult0) * X1 0) (1)
then X is of the form
X(1) = X(0) Y (—a0,17) (D B utg) - Ay 00) ()

where £y 20,7 20 and X( ) R —>{0,1} is the characteristic function.

BDC’ Upper bounded, lower unbounded delays d, >0,d r> 0 exist so that the next

system is satisfied:

Nu@<xy<  JuE)
Eelt—d, 1) E,e[t-a’f,t)

BDC Bounded delays 0 <m, <d, ,0 < my < df exist and the system is the next one

uE) <x(@)< Ju®)

Eelt—d, t—dy+m, ] §e[t—df ,t—a’f +my]

! In the abbreviations that we use: SC, BDC,... the letter ‘C’ comes from ‘condition’: stability (condition),

bounded delay (condition),. ..
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FDC Fixed delays (ideal delays) The relation between u# and X is, for d >0
x()=u(t—d)

AIC dbsolute inertia &, 20, 6f > 0 exist so that X satisfies

x(1-0)-x()<  [)x(©)
Eelt,t+0, ]
x(t-0)-x(n<  [x(®)
Celt,1+d 1]
This inertia condition is added to one of SC, BDC’, BDC, FDC.

RIC Relative inertia 0<p, <§,,0< By < Sf are given so that

x(t = 0) - x(¢) < (u(®)
Eelt—6,,t—0,+1, ]

x(1 = 0)- x(1) < u®)
ée[t*Sf,t—Sfﬂlf]

are satisfied. Similarly with absolute inertia, relative inertia is a request added to one of
SC, BDC’, BDC, FDC.

DBRIDC Deterministic bounded relative inertial delays If in BDC+RIC K, ,0 robf ,0 7

coincide with m,., dr My, df the system takes the special deterministic form

x(t —0) - x(1) = x(¢ - 0) - (u(®)
Eelt—dy 1—dy+m,.]

x(1 = 0) - x(t) = x(t ~ 0) - Nu@
ﬁe[r—df ,t—df +my]

SDBRIDC’ Symmetrical deterministic upper bounded, lower unbounded relative inertial
delays, version of DBRIDC consisting in the next equation

Dx(t) = (x(t=0) @ u(t = 0))- | JDu(€)-%4.0)(1)
Ee(t—d,p)
where
Dx(f) = x(t — 0) - x(£) U x(t — 0) - x(r) = x(t — 0) ® x(¢)
is the left derivative of x .
All the solutions of BDC’, BDC, FDC, DBRIDC, SDBRIDC’ satisfy x(0 — 0)=u(0 — 0)

and some of the previous systems satisfy also supplementary conditions of consistency (i.e. the
existence of a solution x for any u ).

2.2 Example 2 Circuit with Feedback Using a Delay Circuit

In the circuit from 2.1, Fig 2 we suppose that # = x and this corresponds to the next circuit
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Fig 3
SC The satisfaction of SC does not bring any information on X, as it consists in a tautology
of the form —A Vv A, where the proposition A is the equation
3t 2 0,x(1) = X(1) X (-0 49) (1) ® X(20) A1 m) (1)
Interpretation: the circuit can be stable or unstable.

BDC’ The system is
Nx&<x< | Jx©

&elt—d, 1) celt=d 1)
with d, > O,df >0. Let 1,20 so that V¢<t,,x(t)=0. Because Ux(§) =0, we get
Seltg—dyoty)
x(t5)=0. Similarly, let 7, >0 so that V<¢y,x(rf)=1. Because ﬂx(f) =1, we obtain
Selto—d, 1y)

x(ty)=1. ty was arbitrary previously, so that the only solutions of BDC’ are the constant
functions.

On the other hand, the constant functions satisfy any supplementary inertial condition AIC,
RIC because x(z—0)-x(¢) = x(t—0) Tt) =0.

BDC We have the system
Nx® <x0< [ Jx®
Eelt—d, t-d, +m,] Celt-dyt-d+m;]
where 0<m, <d,,0< m;<d,. Let us suppose in the beginning, when solving it, that
x(0—0) =0. The solutions are the next ones.
Case dy—m, >0
We can show analogously with BDC’ that the only solutionis x(¢) =0 .
Case dj—m,=0,d, >0
As the inequality x(¢) < Ux(é) is satisfied by all x, BDC has in this case the same
cfe[l—d/ ,]
solutions like (in other words: is equivalent with)
()x©) <x (1)
Eelt—d, i-d, +m,]
and any solution can be written under one of the forms

x(t)=0 . )
X() = X100y (D) (3)
X(I) = l[rn,rl)(t) ® Z[r2,13)(t) D..® Z[’zn”zml)(t) (4)

XD = X1y (D@ X1, 1) () ... D Xitay i) D® Xty ooy (F) ®)
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XD = 21,y D O X1 1y (... D Xitgy i) (D D .. (6)

(2),...,(6) represent all the signals X with x(0—-0)=0, where 0 Sty<t) <ty <... is
unbounded, arbitrary. (2), (3) satisfy (1) without supplementary requests. If the term Xltrs i)
satisfies #,;,, —t,; >m, we have that

ﬂll’zk”zm)(c—’g) = Xy, *”’n’:kﬂ*dﬁ’"r)(t)
Celt—d, t-d, +m,]

is not null and in order that (4),...,(6) be solutions of (1), the next property should be true for all
k=0:

Liw ~loyp >m, = [ty +d, 1y, +d, —m,) C supp x
We have noted supp x = {t| x(¢) =1} the support set of x .
A special case of (1) is the one when m, =0:
x(t—d,) < x(r) (7)
and then for all £ > 0 the next inclusion
[t +d, s o101 +d,) < supp x
is fulfilled. For example, the ‘periodical’ functions
X(1) = X1y, () @ Xitg+d, i, +d, YD D @ Yy a1 ima () D ..
where 0 <1, <1, <t,+d, satisfy (7) because
X(t=d,)= Hiyvd,ird) O @ Xiyyr2d, 1424 () D .0 ity +(n41yd, 1y +(ne1)-d, ) (D) D .

An interesting situation in BDC+AIC is the special case o, 2 m,, 8f =0 when the

inclusion
[t2x +d,stop 0 +d, —m,) < supp x

is true for all £ >0 and all solutions X, the hypothesis by — by >0, 2 m, being satisfied due to

AIC.
Adding RIC in the case d, - m; =0,d, >0 of BDC, under the form

xt-0)-x(< (&) (8)
Eelt-6,,0-8,+4,]
x-0)x s [)x(&) 9)

56[/—5,,#&‘] +py])

implies if 6, >0 that x(r)=0. For &, =0, inequality (8) becomes trivial: m-x(t) <x(t)
and then, if &, >0, the restrictions corresponding to RIC on the solutions x of BDC are
expressed under the form, see (4),...,(6)

Zit (0 = X( = 0) - x(1) <

= ﬂTé) :Z(—oo,tu+5/—yf)v[ll+§f,t2+5,7;1[)\/[[3+§f,14+5j—yf)v...(t)

Sel[t=6,,1-9, +p,]
1.e. equivalently
{,t3,...} © (—0,1 + oy —H VI +O 0+ o —HVI L+, +0, —Hp)V ..
6, =, =0 means triviality for RIC.
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Case dy—m;=0,d, =0
BDC consists in
xny<xny< | Jx@)
Se[t-d 1]
and all the signals x satisfy it.
By duality, the possibility x(0—0)=1 is analyzed. We observe for example that if

d;—m;>0,d, —m, >0 then the only solutions of BDC are the constant functions.

FDC The equation to be solved is
x(t)=x(t-d),d=0

If d >0, then the solutions are the two constant functions and if d =0 then the solutions
are all the signals.

DBRIDC The system is

x(1=0)-x(¢) = x(t - 0) - ﬂx(g) (10)
Selt—d, 1—d, +m,]
(=0 x()=x(=0)- [ x(&) (1n

elt—d,1~d +m,)
and we suppose like before that x(0—-0)=0.
Case d, >0
The only solution is x(z)=0.
Case d, =0,d, =m, >0
The switch from 0 to 1 is possible, because (10) takes the trivial form

x(t—0)-x(t) = x(t — 0)- x(¢) . From this moment ﬂx(é) is null, thus the solutions have one of
Selt-d 1]

the forms (2), (3).
Case d, =0,d,=m, =0

All the signals x satisfy the system, (10), (11) being both trivial.
Case d, =0,d;, >m; 20
The switch from 0 to 1 seems possible and let 7, be the moment of the first such switch, thus

x(ty —0)-x(#) =1. At the time instant #, >, characterized by [¢,,4,) C supp x , (11) becomes

)= [)x@ (12)

§e[rl—d, Jy—dy +my]
Forall n—d;+m,<t,,ie if 0<t~1y<d, —my , the right member of (12) is 1 and the

switch of x from 1 to 0 necessary. We have reached a contradiction showing that DBRIDC has
no solution x(¢) # 0.

The analysis of the situation when x(0—0) =1 is similar.

SDBRIDC’ The solutions of the equation
Dx()=0
are the constant functions.
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2.3 The Logical Gate NOT

The logical gate NOT that computes the complement in the set {0,1} is symbolized like in the

next figure

Fig 4

where the gate and the two wires are characterized by delays. It is modeled by one of the next
circuits

vl>xl>)’ u>v[>x u’::v >x|>)’
a) b) 9)
Fig 5

In Fig 5 the logical gate is ideal
x(1) = x(0=0) - 70,0y () © V(1) - X0, (1) (D
as well as the wires and the delays are localized in the delay circuits. Writing the relations between
u, v, respectively between X,y follows, like at 2.1. The last step is the elimination (if possible)

of the intermediary variables: X ata), v atb), v and x atc). We give some examples.

SCFig5c)
The fact that © is of the form
u(t) = u(t) X(on,10) () @ u(to) - i1, ) (1) )
implies that v is of the form
V() = V() K (o) (D) B u(tg) - Xy, o0 (1) (3)
thus, from (1), X is given by
x(1) = X()* X (o) (D D u(tp) - Xy, ) (1) 4)
and by using SC again for the second delay circuit we get
V() = V(O X1,y (D O ulty) - Xy, o0 (1) (5)

In(2),...,(5) 1,20,4,20,1,20.

BDC’ Fig 5 a)

Nxo<yo< [Jx@ (6)
Ee[t-d, 1) Selt-d 1)
[0 0) 2r,0)() @ VE) - H10,0(EN) < ¥(1) <
Eelt-d, 1)
< | JE0-0) 20 (O @S- 10,0 (from (1), (6)) (7)
Selt=d .10

BDC’ Fig 5 b)



