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PREFACE

The science and engineering of membrane systems are rapidly
becoming of major interest as applications arise in such diverse fields
as Biotechnology, Biomedicine and Polymer Science. There is a definite
need to pull together the seemingly disparate threads of knowledge
which are appearing in the several disciplines.

The writing of this book arose out of these convictions, as well as
from the perspective of more than twenty five years of research and
teaching in these areas. Quite naturally, in attempting such a synthesis
of ideas, I rely rather strongly on work carried out in our own
laboratory in pursuit of the goal of unification. The purpose of this
book, then, is to unify the principles of diffusion and reaction which
are applying at the molecular level in synthetic and biological
membrane systems. This is an ambitious task and the writer freely
acknowledges that this work is just a beginning; it makes no pretense of
setting out to be all-encompassing. But it is a necessary and worthwhile
beginning, I believe.

While it is true that the subjects of molecular kinetics, diffusion
and thermodynamics are in relatively good shape (Sherwood et al.,
1975),  their interrelation with membrane (polymeric) microstructure
adds a new and exciting dimension. By the same token, chemical and
physical phenomena are displayed in a particularly simple, often
unidimensional domain, where their analysis is tractable and revealing.

It is especially rewarding to explore the interactive control
systems encountered in biology. The inherited wisdom of evolution is
on display whereby efficient use of relatively few elements; i.e., simple
chemical messengers interacting with complex biopolymers in
membrane structures is revealed. And yet, the function of these highly
sophisticated systems is reflected in the behavior of simpler synthetic
membrane systems, as well as in the design of artificial ones; for
example, asymmetric enzyme membranes, as biosensors. The common
theme is the response of a membrane system to penetrant-induced
conformational changes ; frequently, this response is multimodal, as we
shall see.

At this point, it is of interest to define more precisely what is
meant by some of the terms I am employing. By system, I mean "a
regularly interacting or interdependent group of items forming a
unified whole.” The lac operon is a good example of a system, albeit as
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part of a still larger one (the synthetic machinery for B- galactosidase).
I will employ a process approach; that is, "a series of actions or
operations conducing to an end,"” literally taking a system apart
(analysis) to see "what makes it tick," prior to recomposing it
(synthesis or design).

The approach just outlined is readily identified as one which
originated in Cartesian thinking. To Dean Elmer Easton I owe another
debt, for his definition of Engineering which is, "The humane art and
science of employing knowledge of the materials and energy of nature
for the creation of utility and beauty." In this spirit, I liken the
approach I share with kindred research colleagues to a kind of mental
sculpture; that is, the shaping of ideas into the images of phenomena
and processes. Thanks to many such efforts, some of these images have
been polished to a certain smoothness and lustre; for instance, dual
sorption theory. Others might still have a few rough spots; for example,
transport regulation of anaerobic processes. Lastly, the reader will
recognize that all the foregoing is rooted in the continuing intellectual
traditions which began in the Renaissance, a modern chapter of which 1
believe is being written even now in our profession.
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INTRODUCTION

1.0 GENERAL

The diffusive transport of matter across a membrane in response
to an activity gradient is a unifying thread in the fabric of the chapters
which are to follow, so a brief "primer," so to speak, is in order. In the
simplest case, molecular transport occurs via a random walk mechanism
which concludes with desorption of the penetrant from the surface at
the lower concentration. The total permeation process consists then of
sorption, diffusion and desorption.

With a time-invariant concentration difference across the
membrane (see Figure 1.1) the steady state, unidirectional flux of gas
can be described by Fick's first law of diffusion:

oc
J = -D— [1.1]
ax

where J is the flux and 9c¢/3x the concentration gradient. (When a
counterposing gradient involving another chemical cemponent exists,
one is dealing with the process of counterdiffusion.)

To consider a simple standard case, the sorption of gas in
rubbery polymeric membranes is so low that gas-gas interactions are
negligible and D is independent of concentration.

Thus with D = f(c) [1.2]
J] =Df[cr-c]/L [1.3]
where c¢; and ¢, are ‘the concentrations at the upstream and downstream

surfaces of the membrane, respectively, and L is the thickness of the
membrane.
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Direction of diffusion _

Figure 1.1 Molecular diffusion across a polymer membrane.

Accumulated evidence has demonstrated that sorption of gases in
rubbery polymers is often well-described by Henry's Law, so that the
concentration of the gas, c, at either surface of the membrane can be
related to its partial pressure there:

c = kp [1.4]
Thus,

(p1 - p2]
Dk —m [1.5]

—
I

where k is the Henry's Law solubility constant, and p; and p, refer to
the pressures at the film surfaces.

By definition, the product of D and k is P, the permeability
constant,

P = kD, [1.6]

and,
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B Tu AQ )
P = —_— = _— s [17]
(p1 - P2 At Alpy -p2]

where AQ is the amount of gas transmitted in the given interval of time,
At, and A is the area of the membrane exposed to the diffusing gas.

1.1 TRANSIENT STUDIES

Much progress has been made by focusing attention on separate
measurement of the diffusion and solubility constants and correlating
the data obtained according to molecular models of the permeation
process. An important step was taken by Barrer (1939) who adapted the
dynamic method of Daynes (1920), called the time lag method, to the
measurement of diffusion constants. The mathematical basis for this
procedure is an integration of Fick's second law,

2%¢ oc
D— = — [1.8]
o x? ot
applying to unsteady state, unidirectional diffusion. The necessary

boundary conditions are an initially gas free film, attainment of
equilibrium at the inlet gas-polymer interface, and zero concentration
of gas held at the polymer outflow face. The first condition is assured
by evacuation of the film prior to introduction of the permeant, the
second has been experimentally found to apply for many polymer-gas
systems, through sorption isotherms, and the third condition is
automatically satisfied because of the extremely slow rates of
permeation encountered experimentally. These conditions being
satisfied, extrapolation to zero pressure of the steady state portion of a
plot of pressure downstream of the polymer membrane versus time
yields a value ©, called the time lag. This extrapolation may be
accurately accomplished because the pressure-time plot is linear after
steady state has been attained. The time lag is simply related to the
diffusion constant.

D = — [1.9]
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Permeabilities can be calculated from the amount of gas which
has passed through the polymer in the course of an experiment. The gas
i1s collected and application of the perfect gas law allows a calculation of
P. From the ratio of P/ D, the solubility constant k is determined.

1.2 MICROHETEROGENEITY IN MEMBRANES

In contrast to the "ideal" case of the rubbery polymer membrane,
synthetic polymer membranes and biological membranes frequently
display various kinds and degrees of microheterogeneity. In the case of
synthetic glassy polymers, this effect arises out of the "freezing-in" of
unrelaxed excess free volume as the polymer passes through the glass
transition temperature, below which segmental translations and

rotations do not readily occur. The resulting structure contains
penetrant-entrapping microvoids, as well as regions which are rich in
amorphous chain segments of more normal density. For biological

membranes, the coexistence of lipids and proteins in the structure
produces the effect. In both cases, the presence of microheterogeneity

confers a multi-fold transport character on the structure. For
penetrants in glassy polymers, duality of transport modes often suffices
to explain the results. For biological membrane systems, various

hierarchies are possible, including the duality of passive and active
transport.

The interactions of the penetrant with the polymer
microstructure are conveniently described with equilibrium
thermodynamic models; Langmuir and Henry's law relations for
synthetic systems and ligand binding relations such as the Monod
allosteric model for biological membrane systems. In the latter case,
the model can be described as a Langmuir relation with a variable site
saturation coefficient.

In all these instances, the influences of the penetrant binding
reactions on the diffusional process can be profound, particularly in
the transient regime. Reversible site-binding reactions almost
invariably prolong the time lag which is a measure of the time required
to reach the stationary state for a membrane system. These delays are
offset in biological systems through the agency of essentially
irreversible forward reaction processes which produce sharper
gradients.

In order to comprehend these diverse phenomena it is perhaps
best to cut one's teeth (as did the author) on the synthetic membrane

...... S R R N RIS AT S [P 0 LR R 1
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penetrant.  Next, one can move on to a structure which is a hybrid
synthetic polymer-biopolymer membrane system; i.e., an enzyme
membrane or biosensor. Then, membrane enclosure of active biological
entities such as enzymes or whole cells leads logically to a
consideration of biocatalysts and bioreactors. These chapters provide a
bridge between the purely synthetic membrane systems treated near the
beginning of this book and the purely biological membrane systems
treated near its conclusion.

1.3 BIOSENSORS AND ENZYME CATALYSIS

It is helpful to begin a discussion of biological membrane
systems with the consideration of enzyme biosensors. Now, to the
elementary transport steps of sorption and diffusion for a penetrant, we
must add the elementary reaction steps which consume the penetrant or
produce it from another species, the "substrate."

KINETIC BEHAVIOR OF IMMOBILIZED ENZYMES
The simplest model of conversion of substrate (S) to product (P)
catalyzed by unsupported enzyme (E) is,

ki ky
E+S & ES =2 P+ E
k4

where ki, k.1 and ky are kinetic constants. If one assumes that a steady
state exists in which the concentration of intermediate (ES) does not
vary with time, the Michaelis-Menten relationship can be developed:

koEo S
V=-— [1.10]

Km + S
where V = velocity of the enzyme reaction; K, = Michaelis-Menten
constant; Ep = total enzyme concentration; and S = substrate

concentration.

If the concentration of substrate is large relative to Ky , then V
= k) Ep = Vip and the rate of reaction is at its maximum.

When an enzyme is attached to a solid support, the kinetic
pattern of reaction changes considerably, leading to changes in the
values of the kinetic parameters K, and V,, . The kinetics of such



