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2 ALGEBRAIC THEORY

We shall develop here a Galois theory for difference equations. In the Picard-
Vessiot Galois theory for differential equations, the basic objects of study are the
Picard-Vessiot extension of a field and its associated Galois group. Recall that
a Picard- Vessiot extension of a differential field & is an extension A" generated
by a fundamental set of solutions of a linear differential equation and having
the same field of constants as k. The automorphism group of A over k is an
algebraic group and properties of this group reflect properties of the differential
equation. When one tries to mimic this approach for difference equations one is
confronted with the following example (recall that a difference field is a field &
together with an automorphism ¢ of k):

Example 0.1 ([25]) Let k be a difference field whose characteristic is not 2. If
the field of constants C, = {c € k | ¢(c) = ¢} is algebraically closed, then the
equation ¢x + x = 0 has no nonzero solution in k. To see this note that if y € k
satisfies oy+y = 0 then ¢(y?) = y° so y* is a constant. Since C}, is algebraically
closed, we have y is a constant, contradicting the fact that ¢y = —y.

Therefore, if one restricts oneself to fields, the properties of having alge-
braically closed constants and having full sets of solutions of difference equations
can be incompatible. A field theoretic Galois theory for difference equations was
developed by Franke [25] who investigated its ramifications. The main deficiency
of this theory is that one could not associate a Picard-Vessiot-type extension to
every difference equation. We take a different approach. Fahim [23], Levelt [36],
and van der Put [49] showed that a Galois theory of differential equations could
be based on rings, in particular, simple differential rings. In the differential case,
the rings are integral domains and so have quotient fields which are the Picard-
Vessiot extensions. We shall follow this approach and develop a theory based
on simple difference rings. These rings will be shown to be reduced but can
have zero divisors. Nonetheless they are the natural analogue of Picard-Vessiot
extensions.

In Chapter 1, we will develop the basic properties of the Picard-Vessiot the-
ory of difference equations - their existence and unicity, and the existence of a
Galois group that is a linear algebraic group. In Chapter 2, we discuss algo-
rithms for determining the Galois group of difference equations of order 1 and
difference equations in diagonal form. We also outline the algorithm of Hendriks
[26] for determining the Galois group of second order difference equations. Chap-
ter 3 is devoted to giving an algebraic (and constructive) proof of the fact that
every connected linear algebraic group is the Galois group of a Picard-Vessiot
difference ring over C'(z), where C' is an arbitrary algebraically closed field of
characteristic zero and the difference operator is defined by ¢(z) = 2z + 1. We
return to this question in Chapter 8 where we show (using analytic tools) that
a necessary and sufficient condition for a linear algebraic group to be the Galois
group of a difference equation over C({z71}), (C being the complex numbers)
is that /G is cyclic, where GG° is the connected component of the identity in
(. Chapter 4 applies the Galois theory of difference equations to the study of
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algebraic properties of linear recursive and differentially finite sequences, that is,
sequences satisfying difference equations over (" and C'(z) respectively. Chapter
5 considers difference equations over F,,(r). where f,, is the algebraic closure of
the field with p elements. We show that there is a simple classification of differ-
ence modules M over this field. Furthermore, we show that the difference Galois
group of M is the Zariski closure (over F, (27 — r)) of the cyclic group gener-
ated by the “p-curvature of M™. We also compare the characteristic zero and
characteristic p theories and show that the natural analogue of the Grothendieck
conjecture is false for difference equations. In Chapter 6, we give the classifica-
tion of difference modules over P, the field of Puiseux series in t = z~!, where
o(t'/™m) = t/™(1 + t)=/™_ The results here are similar to the formal local
classification of differential modules and form the starting point for the study of
analytic properties of difference modules.

We wish to thank Anne Duval for many discussions during the preliminary
stages of writing and in particular for her help with the material in Chapters 6
and 7.



Chapter 1

Picard-Vessiot rings

We begin this section with several definitions.

Definition 1.1 1. A difference ring s a commutative ring R, with 1, together
with an automorphism ¢ : R — R. If, in addition, R is a field, we say that
R s a difference field.

2. The constants of a difference ring R, denoted by C'y are the elements ¢ € R
satisfyimg o(c) = c.
3. A difference ideal of a difference ring s an wdeal I such that ¢(a) € [

or all a € 1. A simple difference ring is a difference ring R whose only
p g A g

difference wdeals are (0) and R.
Example 1.2 Let C be the field of complex numbers. Each of the fields

e C(z). the field of rational functions in :,

o C({z7'}), the fraction field of convergent power series in 7',
e C((z7h). the fraction field of formal power series in 271,

are all difference fields with ¢ given by ¢(z) = =+ 1. For the last two fields this
means that ¢ is given by ¢(t) = 1'T where ¢ = :~!. Note that this automorphism
extends to

e P, the algebraic closure of C((z7')), which is also called the field of the
formal Puiseux series,

by putting ¢(tm) = tm (1 + 1)~ . 1

Example 1.3 Consider the set of sequences a = (ay.ay....) of elements of an
algebraically closed field . We define an equivalence relation on this set by
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saying that two sequences a,b are equivalent if there exists an N such that
a, = b, for all n > N. Using coordinatewise addition and multiplication,
one sees that the set of such equivalence classes forms a ring §. The map
¢o((ap, ar,as,...)) = (ar,as,...) is well defined on equivalence classes (one needs
to work with equivalence classes to have the property that this map is injective).
The ring S with the automorphism ¢g is therefore a difference ring. To simplify
notation we shall identify an element with its equivalence class. The field C
may be identified with the subring of constant sequences (c,c,¢,...) of S. If the
characteristic of C' is zero then any element of C(z) is defined for sufficiently
large integers (note that in characteristic p, this is not true for (27 — 1)1 ).
Therefore the map f — (f(0), f(1),...) defines a difference embedding of C(z)
into 8. Note that the map the map f — (f(0), f(1),...) also defines a difference
embedding of C({z7!}) into S.

We note that S is not a simple difference ring. To see this let a be any
sequence whose support (i.e., those integers i such that a; # 0) is an infinite set
of density zero in the integers (e.g., a = (a;) where a; = 1 if i is a power of 2 and
0 otherwise). The ideal generated by a, ¢o(a), ¢3(a), ... is a nontrivial difference
ideal in §. ]

Let R be a difference ring. For A € Mat,(R)
oY = AY
denotes a first order linear difference system. We shall restrict ourselves to
equations where A € Gl,,(R) (to guarantee that we get n independent solutions).
Here Y denotes a column vector (y1,...,y.)T and ¢Y = (¢y1,...,6y.)T. Given

an n'? order difference equation L(y) = ¢"y + ...+ a1¢Y + agY = 0 we can
consider the equivalent system

by ' 0

4 1 0 4
] 0 1 0 o'y
¢ny —ap —ai ... —Ap-2 —0ap-1 ¢n;1y

For this system, the condition that the matrix lies in G/, is that ag # 0.

Definition 1.4 Let R be a difference ring and A € Gl,(R). A fundamental
matrix with entries in R for ¢Y = AY s a matriz U € Gl,(R) such that
oU = AU. If U and V are fundamental matrices for Y = AY, then V. =UM
for some M € Gl,(Cr) since U™V is left fived by ¢.

Definition 1.5 Let k be a difference field and ¢Y = AY a first order system
A € Gl,(k). We call a k—algebra R a Picard-Vessiot ring for ¢Y = AY of:

1. An automorphism of R, also denoted by ¢, which extends ¢ on k is given.
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2. R is a simple difference ring.
3. There exists a fundamental matriz for Y = AY with coefficients in R.

4. R 1s minimal in the sense that no proper subalgebra of R satisfies the
conditions 1,2 and 3.

We will show in the next section that if Cj is algebraically closed then, for
any system ¢Y = AY, there is a Picard-Vessiot ring for this system and that it
1s unique up to k—difference isomorphism.

Example 1.6 Let C be an algebraically closed field of characteristic not equal
to 2. R be the difference subring of S generated by C and j = (1,-1,1,—1,...).
Note that R = C[(1,—1,1,—1,...)]. The 1 x 1 matrix whose only entry is
(1,—1,1,—1,...) is the fundamental matrix of the equation ¢oy = —y. This
ring is isomorphic to C[X]/(X? — 1) whose only non-trivial ideals are generated
by the cosets of X — 1 and X + 1. Since the ideals generated in R by j+ 1 and
j — 1 are not difference ideals, R is a simple difference ring. Therefore R is a
Picard-Vessiot extension of C'. Note that R is reduced but not integral. |

In the following sections we will make use of the next elementary lemma.

Lemma 1.7 a) The set of constants in a simple difference ring forms a field.
b) If I is a mazimal difference ideal of a difference ring R, then I is a radical
ideal and for any r € R, ¢(r) € I if and only iof r € I. Therefore R/I is a
reduced difference ring.

Proof: a) If ¢ is a constant, then ¢ - R is a nonzero difference ideal so there is a
d € R such that ¢-d = 1. A computation shows that d is a constant.

b) To prove the first claim, one can easily show that the radical of a difference
ideal is a difference ideal. To prove the second claim, note that {r € R | ¢(r) € I}
is a difference ideal that contains I but does not contain 1. 1

The remainder of this section is organized as follows. In section 1.1 we show
the existence and uniqueness of Picard-Vessiot rings assuming that the field of
constants of k is algebraically closed. In section 1.2, we shall show that the
group G of k—difference automorphisms of a Picard-Vessiot ring R that is a
separable extension of k has the structure of an algebraic group over C} and
that R is the coordinate ring of variety which is a principal homogeneous space
for G. In section 1.3 we consider the total quotient ring of a Picard-Vessiot
ring and establish a Galois correspondence between certain difference subrings
and closed subgroups of the Galois group. Finally in section 1.4, we consider
the Tannakian category approach to defining the Galois group [20] and we will
discuss the relation of our approach to this approach.



1.1. EXISTENCE AND-UNIQUENESS OF PICARD-VESSIOT RINGS T

1.1 Existence and uniqueness of Picard-Vessiot
rings

Let k be a difference field and let
6(Y) = AY (1.1)

be a difference system with A € Gl(d)(k). To form a Picard-Vessiot ring for
(1.1) we proceed as follows. Let (X;;) denote a matrix of indeterminates over k
and let det denote the determinant of this matrix. On the k—algebra k[X;;, d—i?]
one extends the automorphism ¢ be setting (¢.X;;) = A(X;;). If I is a max-
imal difference ideal of k[X;;, ;;] then Lemma 1.7 implies that k[X;;, 7=]/1
is a simple difference ring. From the definition we see that k[X;;, ﬁ]/] is a
Picard-Vessiot ring for (1.1) and any Picard-Vessiot ring will be of this form. To
prove uniqueness of Picard-Vessiot rings, we need the following result. In this
result we restrict ourselves to difference fields with algebraically closed fields of
constants. This restriction excludes difference fields (k, ¢) with ¢ of finite order.
In particular, (F,(z),¢(z) = z + 1) is excluded.

Lemma 1.8 Let R be a finitely generated k-algebra having an automorphism,
also called ¢, extending ¢ on k. Let C be the constants of k and assume that
C 1s algebraically closed and that R is a simple difference ring. Then the set of
constants of R is C.

Proof: Suppose that b ¢ C and ¢(b) = b. Consider the subring C[b] of R.
Since R is simple every nonzero element f of this subring has the property
that Rf = R, i.e., there is an element ¢ € R such that fg = 1. Since C
is algebraically closed it follows that C[b] is a polynomial ring over C. Let k
denote the algebraic closure of k. One sees that any nonzero element f € C[b]
defines a regular, nowhere zero map of the affine variety spec(k @k R) to k whose
image is therefore a constructible subset of k. Consider the map defined by
the element b. If ¢ € C is in the image of this map then the map defined by
b—c € C[b] has a zero. Therefore the image of the map b has empty intersection
with C. It follows that the image of this map is finite and so there is a polynomial
P=X%4a4-1 X% 4. .+ap € k[X] such that k[b] = k[X]/(P). Since ¢(b) = b,
one finds that b also satisfies the polynomial X ¢ + ¢(aq—1) X% 1 + ... + ¢(ao).
The uniqueness of P implies that P lies in C[X]. This contradicts the fact that
C[b] is a polynomial ring over C. ]

Proposition 1.9 Let k be a difference field with algebraically closed field of
constants and let R, and Ry be Picard-Vessiot extensions of k for ¢(Y) = AY.
Then there exists a k—difference isomorphism between R; and Rs.

Proof: We consider R; ®x R» a difference ring where ¢(r; @ r2) = ¢(71) @ ¢(r2).
Choose an ideal I in R; @x R2 which is maximal in the collection of ¢-invariant
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ideals and put Rz = R; ®x R2/I. The canonical maps R; — Rz and Ry — R3
are injective since the kernels are ¢-invariant ideals. The image of the first map
is generated over k by a fundamental matrix in Rz and similarly for the second
map. Two fundamental matrices differ by a matrix with coefficients in Ckg,,
which according to Lemma 1.8 is C. It follows that the two images are the
same. Hence R; is isomorphic to Rs. [ |

1.2 The Galois group

As an aid in understanding the structure of Picard-Vessiot rings, we will intro-
duce a geometric point of view. As noted above, any Picard-Vessiot extension
for (1.1) is of the form k[X;;, -=-]/I where I is a maximal ¢—invariant ideal of
k[Xij, =]. Lemma 1.7 implies that such an ideal is a radical ideal and so is the
ideal of a reduced algebraic subset of Gl(d); = spec(k[X;;, 7]). Let k denote
the algebraic closure of k. The automorphism ¢ extends to an automorphism
of k which will also be denoted by ¢. The automorphism ¢ of D := E[X,-j, B_zle—t]
extending ¢ on k, is given (in matrix notation) by (6.Xi;) = A(Xij). For every
maximal ideal M of D, ¢(M) is also a maximal 1deal. The maximal ideal M
has the form (X1 — b1, X12 — b12, ..., Xd4a — b4a) and corresponds to the ma-
trix B = (b;;) € GI(d)(k). A small calculation shows that the maximal ideal
#(M) corresponds to the matrix A=1¢(B). The expression ¢(B) for a matrix
B = (b;;) is defined as before as (¢(b;j)). Thus ¢ on D induces the map 7 on

Gl(d)(k), given by the formula 7(B) = A=1¢(B). The elements f € D are seen

as functions on G!(d)(k). The following formula holds
(6f)(m(B)) = ¢(f(B)) for f € D and B € Gl(d)(k).

Indeed, one can easily verify the formula for f € k and for the f = Xij. This
proves the formula for any f € D.

For an ideal J C k[Xj, 7] satisfying ¢(J) C J, one has ¢(J) = J. Indeed,
if ¢(J) is a proper subset of J then one finds an infinite chain of ideals
J C ¢ YJ)C ¢~%(J) C ... This contradicts the Noetherian property of
k[Xij, 2=]. Likewise for reduced algebraic subsets Z of GI(d)x the condition
7(Z) C Z implies 7(Z) = Z. The following lemma is an immediate consequence
of the remarks above and the formula. '

Lemma 1.10 The ideal J of a reduced subset Z of Gl(d)x satisfies ¢(J) = J of
and only if Z(k) satisfies TZ(k) = Z(k)

An ideal J maximal among the ¢-invariant ideals corresponds then to a min-

imal (reduced) algebraic subset Z of GI(d)x such that 7(Z(k)) = Z(k). We shall
call such a set a minimal T—invariant reduced set.
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Let Z be a minimal 7-invariant reduced subset of Gl(d)x with ideal
I C k[Xi;, 2] and let O(Z) = k[X;;, 7=]/I. Let z; ; denote the image of X; ;

in O(Z). One considers the rings

1 1

k[Xij, =] C O(Z) @k k[ X, m]

1

0(2) @c ClY; ”"m]

]3([} (1.2)

1
B9 det(Y,

where the variableb Y; ; are deﬁned by (Xi ;) = (xi;)(Yi;). Note that the action
of ¢ on C[Y] ;, det ] C O(Z) @k k(X j, W] is the identity. Let (/) be the
ideal of O(Z2) Q;\ k[\, T t] generated by [/ and let J be the intersection of (I)
with C[Y; ;, 2;]. The ideal (I) is ¢-invariant. Using that the set of constants of
O(Z) is C one can prove that J generates the ideal (1) in O(Z) @k k[X, ;, 7]
The proof follows from the next lemma.

Lemma 1.11 Let R be a Picard-Vessiot ring over a field k and let A be a
commutative algebra with unit over Cy. The action of ¢ on A is supposed to be
the identity. Let N be an ideal of R @ A which is invariant under ¢. Then N
1s generated by the ideal N N A of A.

Proof: Dividing A by N N A and R @c A by the ideal generated by N N A,
one reduces the lemma to proving that N # 0 implies that NN A # 0. Let
{ai}ier be a basis of A over C'. Consider a minimal subset 7 of Z such that
NN iesg R®a; #0. Fix some j € J, then the set of the b € R such that
there exists an element in NN} .., R® a; with coordinate b at the place j, is
a nonzero ideal of R which is invariant under ¢. Hence there exists an element
f € NNy e 7 R®a; with coordinate 1 at the place j. If 7 has only one element
then a; € NN A. If J has more than one element, then ¢(f) — f has a smaller
support than J. Hence ¢(f) — f = 0. It follows that all the coordinates of f
are in the field of constants C' of R. Hence f € N N A. 1

In particular, the above lemma shows that when we divide the rings in the
sequence (1.2) by the ideals /, (), and J, we have

O(Z) 5 0(Z)x0O(Z) = (1.3)

1

=0(Z) ®c (CYijy 5o det(Yi ;)

]/J & ClYeg ===l

1
det(Y; ;)
We now assume that the ring O(Z) is a separable extension of k
( [15], §7, n°. 5). In this case Corollaire 3 of ([15], §7, n°. 5) and Corol-
laire 3 of ([15]. §7, n°. 6) imply that O(Z) ¢ O(Z) is reduced. Therefore,
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ClY: ;. —;]/J is reduced and so J is a radical ideal. Note that our assump-

tion on O(Z) is always true if the characteristic of k is zero or more generally,
if k is perfect. We will now show that J is the ideal of an algebraic subgroup of

Gl(d)(C).

Consider a matrix A € GI(d)(C). Let o4 denote the action on the three
rings in the sequence (1.2) given by (64.X; ;) = (Xij)A and (04Yi: ;) = (Yi;)A.
Using Lemma 1.11 and the facts that I is maximal and Z 1s minimal, one can
easily show that following conditions on A are equivalent:

1. ZA = Z.

ZANZ #£0.

oal = 1.

I + o1 is not the unit ideal of k[X; ;, ].

oa(l) = (I).

(I) + 04 (I) is not the unit ideal of O(Z) @4 k[.X; ;, dlj]
oad =J.

e

J + o4J is not the unit ideal of C[Y; ;, det]

The collection of the A satisfying the equivalent conditions form a group.

Lemma 1.12 Let O(Z) be a separable extension of k. Using the above notation,
A satisfies the equivalent conditions if and only if A lies in the reduced subspace
V of Gl(d)c defined by J. Therefore, the set of such A is an algebraic group.

Proof: Assume that A satisfies the conditions. Condition 3. implies that A
defines a difference automorphism on O(Z). We again refer to this automorphism
as 04. This in turn allows us to define a difference homomorphism id ® o4 :
O(Z) @k O(Z) — O(Z) given by a ® b — aca(b). Restricting this map to
ClYij, 2=1/J C O(Z) ®k O(Z) we get a difference map from C[},J, det]/‘] to
O(Z). Since the difference operator is the identity on C[Y; i —L]/J, the image
of this map must lie in the constants of O(Z), that is, in C. Therefore A
corresponds to a map in HOM¢(C[Y; ;, 4=]/J,C) and so A is a point of V.

Conversely, let A lie in V. Then A yields a difference homomorphism from
o(V) @c ClYi ;, det]/'] to O(V') given by a @ b — a - b(A). If we restrict this
map to O(Z) = 1® O(Z) C O(Z) @ O(Z) = O(V) @c C[Yi;, 71/J, we have
a difference homomorphism from O(Z) to O(Z). One then sees that this yields
O'AI =T l

Let G denote the group of the automorphisms of O(Z) over k which commute
with the action of ¢. The group G is called the (difference) Galois group of the
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equation ¢(Y') = AY over the field k. Each element o of G must have the form
(oz; ;) = (zi;)A where A € Gl(d)(C) is such that o4 (as defined above) satisfies
oal = 1. It follows that G coincides the points of the algebraic group V. In the
sequel we will identify G and V' and denote by O(G) the ring C[Y; j, ﬁ]/]. Let
O(Gk) = O(G) ®@c k and Gy = spec(O(Gy)). From the sequence of rings (1.3),

we have
0(Z) =2 0(Z)®r0(Z) =0(Z) ®c O(G) = O(Z) @k O(Gk) (1.4)

The first embedding of rings corresponds to the morphism Z x Gy — Z given by
(2,9) = zg. The identification O(Z)®@xO(Z) = O(Z)@cO(G) = O(Z)@x O(Gy)
corresponds to the fact that the morphism Z x Gy — Z x Z given by (z,g) —
(zg,z) 1s an isomorphism. In other words, Z is a k—homogeneous space for G
or in the language of [20], Z/k is a G-torsor. The following theorem summarizes
the above.

Theorem 1.13 Let R be a separable Picard-Vessiot ring over k, a difference
field with algebraically closed subfield of constants, and let G denote the group
of the k-algebra automorphisms of R which commute with ¢. Then G has a
natural structure as reduced linear algebraic group over C' and the affine scheme
Z = spec(B) over k has the structure of a G-torsor over k.

Example 1.14 In the course of the proof of the above result, the assumption
that R was separable over k was used to prove that the group G was a reduced
space. We give here an example in characteristic p where this is not the case.
Let ko be an algebraically closed field of characteristic p > 0 such that there is
an « € kj which is not of finite order. Let k& = ko((z)) with automorphism ¢
given by ¢(z) = az (and so ¢(>_ anz") = >  ana™z"). Let B € kg satisfy 3 = a.
Consider the 1-dimensional difference equation ¢(X) = 8X. A calculation shows
that L = k[X]/(XP? — z) is the Picard-Vessiot ring for the equation. It is in
fact an inseparable extension of k and so L ®; L has nilpotents. Following
the above development further, one finds that the difference Galois group for
the equation above is the group p, in characteristic p. This group is given as
spec(kg[t]/(t? — 1)) and the group structure is given by t — t @ t. ]

The fact that a Picard-Vessiot ring is the coordinate ring of a torsor for its
Galois group has several interesting consequences, which we now state. .

Corollary 1.15 Let R be a separable Picard-Vessiot ring over k, a difference
field with algebraically closed subfield of constants, and let G denote the group of
the k-algebra automorphisms of R which commute with ¢. The set of G—invariant
elements of R is k and R has no proper, nontrivial G—invariant ideals.

Proof: Let R = O(Z) for some G—torsor Z and let k be the algebraic closure

of k. Any G—invariant element of R defines a regular function on Z(k). Since



