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PREFACE

Our purpose is to. present a reasonably complete introduction to the
theory of numbers within the compass of a single volume. The basic
concepts are presented in the first part of the book, followed by more
specialized material in the final three chapters. Paralleling this
progress from general topics to more particular discussions, we have
attempted to begin the book at a more leisurely pace than we have
followed later. Thus the later parts of the book are set forth in a
more compact and sophisticated presentation than are the earlier parts.

The book is intended for seniors and beginning graduate students
in American and Canadian universities. It contains at least enough
material for a full year course; a short course can be built by the use
of Sections 1.1 to 1.3, 2.1 to 2.4, 3.1, 3.2, 4.1, 5.1 to 5.3, 5.5, 6.1, and
6.2. Various other arrangements are possible because the chapters
beyond the fourth are, apart from a very few exceptions, independent
of one another. The final three chapters are entirely independent of
each other.

To enable the student to deepen his understanding of the subject,
we have provided a considerable number of problems. The variety
of these exercises is extensive, ranging from simple numerical problems
to additional developments of the theory. The beginner at number
theory should take warning that the subject is noted for the difficulty
of its problems. Many an innocent looking problem gives, by the very
simplicity of its statement, very little notion of the considerable
ingenuity or depth of insight required for its solution. As might be
expected, the more difficult problems are placed toward the ends of
the sets. In many instances three or four consecutive problems consti-
tute a related series in which the last ones can be solved more readily
by use of information from the first ones. As a matter of principle we
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vi PREFACE

have made the text itself entirely independent of the problems. In
no place does the proof of a theorem depend on the results of any
problem.

In choosing methods of proof, we have tried to include as many
methods as possible. We have tried to state the proofs accurately,
avoiding statements that could be misleading and also avoiding unduly
long discussions of unimportant details. As the reader progresses
he will become familiar with more and more methods, and he should
be able to construct accurate proofs by patterning them after our
proofs.

The reader interested in further exploration of the subject will find
the bibliography at the end of the book of considerable use. In
particular, anyone interested in the history of the subject should con-
sult O. Ore, Number Theory and Its History, and, for more specific
information, L. E. Dickson, History of the Theory of Numbers. Our
approach is analytical, not historical, and we make no attempt to
attribute various theorems and proofs to their original discoverers.
However, we do wish to point out that we followed the suggestion of
Peter Scherk that we use F. J. Dyson’s formulation of the proof of
Mann’s e Theorem. Our proof is based on notes graciously placed
at our disposal by Peter Scherk. For permission to use several prob-
lems from the American Mathematical Monthly, we are indebted to the
editors. We also appreciate the careful reading of the manuscript
by Margaret Maxfield, whose efforts resulted in numerous improve-
ments. Finally, we would like to record our deep appreciation of and
our great debt to the mathematicians whose lectures were vital to our
introduction to the theory of numbers: L. E. Dickson, R. D. James,
D. N. Lehmer, and Hans Rademacher.

Ivan NiIveN
HERBERT S. ZUCKERMAN
June 1960
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CHAPTER 1

DIVISIBILITY

1.1 Introduction

The theory of numbers is primarily concerned with the properties of the
natural numbers, 1, 2, 3, 4, - - -, also called the positive integers. How-
ever, the theory is not strictly confined to just the natural numbers or even
to the set of all integers: 0, +1, +2, +3,-... In fact, some theorems of
number theory are most easily proved by making use of the properties of
real or complex numbers even though the statement of the theorems may
involve only natural numbers. Also, there are theorems concerning real
numbers that depend so heavily on the properties of integers that they are
properly included in the theory of numbers.

An integer n greater than 1 is called a prime if it has no divisor 4 such
that 1 < d < n. The fact that for every given positive integer m there is
a prime greater than m is stated in terms of integers, and it can be proved
from the properties of the natural numbers alone. The fact that every
natural number can be expressed as a sum of, at most, fifty-four fifth
powers of integers is also stated in terms of natural numbers, but any
known proof depends on properties of complex numbers. Finally, the
question as to how many primes there are that do not exceed x clearly
belongs to the theory of numbers but its answer involves the function
log x and is well outside of the realm of the natural numbers. The last
two examples are beyond the scope of this book. However, we do not
restrict ourselves to the integers but will use real and complex numbers
when it is convenient. The questions discussed in this book are not
numerical computations or numerical curiosities, except insofar as these

are relevant to general propositions. Nor do we discuss the foundations
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2 DIVISIBILITY CH. 1

of the number system; it is assumed that the reader is familiar not only
with the integers, but also with the rational and real numbers. However, a
rigorous logical analysis of the real-number system is not prerequisite to
the study of number theory.

The theory of numbers relies for proofs on a great many ideas and
methods. Of these, there are two basic principles to which we draw
especial attention. The first is that any set of positive integers has a
smallest element if it contains any members at all. In other words, if a
set S of positive integers is not empty, then it contains an integer s such that
for any member a of S, the relation s < a holds. The second principle,
mathematical induction, is a logical consequence of the first.* It can be
stated as follows: if a set S of positive integers contains the integer 1, and
contains » + 1 whenever it contains #, then S consists of all the positive
integers.

It may be well to point out that a negative assertion such as, for example,
““Not every positive integer can be expressed as a sum of the squares of
three integers,” requires only that we produce a single example—the
number 7 cannot be so expressed. On the other hand, a positive assertion
such as ‘““Every positive integer can be expressed as a sum of the squares
of four integers,” cannot be proved by producing examples, however
numerous. This result is Theorem 5.6 in Chapter 5, where a proof is
supplied.

Finally, it is presumed that the reader is familiar with the usual formula-
tion of mathematical propositions. In particular, if 4 denotes some
assertion or collection of assertions, and B likewise, the following state-
ments are logically equivalent—they are just different ways of saying the
same thing.

A implies B.

If A is true, then B is true.

In order that A4 be true it is necessary that B be true.
B is a necessary condition for 4.

A is a sufficient condition for B.

If 4 implies B and B implies A4, then one can say that B is a necessary and
sufficient condition for A4 to hold.

* Compare G. Birkhoff and S. MacLane, A Survey of Modern Algebra, Macmillan,
revised edition, 1953, pp. 10-13.
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In general, we shall use roman letters a, b,c, ---, m, n, -+ -, X, y, Z to
designate integers unless otherwise specified.

1.2 Divisibility

Definition 1.1 An integer b is divisible by an integer a, not zero, if there
is an integer x such that b = ax, and we write a|b. In case b is not divisible
by a we write atb.

Other language for the divisibility property a|b is that a divides b, that
a is a divisor of b, and that b is a multiple of a. Ifalband 0 <a< b
then a is called a proper divisor of 5. It is understood that we never use 0
as the left member of the pair of integers in a|b. On the other hand, not
only may 0 occur as the right member of the pair, but also in such instances
we always have divisibility. Thus a|0 for every integer a not zero. The
notation ak|b is sometimes used to indicate that aX|b but aX+14b.

Theorem 1.1

(1) a|b implies a|bc for any integer c;

(2) a|b and b|c imply a|c;

(3) alb and a|c imply a|(bx + cy) for any integers x and y;
(4) a|b and bla imply a = +b;

(5) alb,a > 0, b >0, imply a < b.

Proof. The proofs of these results follow at once from the definition of
divisibility. Property 3 admits an obvious extension to any finite set,
thus:

z b;x; for any integers x;.

j=1

albla alb29 R a|bn lmply a

Property 2 can be extended similarly.

Theorem 1.2 The division algorithm. Given any integers a and b, with
a >0, there exist integers q and r such that b =qa + r,0 < r < a.
If atb, then r satisfies the stronger inequalities 0 < r < a.

Proof. Consider the arithmetic progression
oo, b—3a,b—2a,b—a,b,b+a,b+ 2a,b+ 3a,---

extending indefinitely in both directions. In this sequence, select the
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smallest non-negative member and denote it by r. Thus by definition r
satisfies the inequalities of the theorem. But also r, being in the sequence,
is of the form b — ga, and thus ¢ is defined in terms of r, and the proof is
complete.

We have stated the theorem with the assumption a > 0. However this
hypothesis is not necessary, and we may formulate the theorem without it:
given any integers a and b, with a # 0, there exist integers g and r such that
b=ga+r0=r<]|al

Theorem 1.2 is called the division algorithm. An algorithm is a mathe-
matical procedure or method to obtain a result. We have stated Theorem
1.2 in the form “‘there exist integers ¢ and »,”” and this wording suggests
that we have a so-called existence theorem rather than an algorithm.
However, it may be observed that the proof does give a method for
obtaining the integers g and r, because the infinite arithmetic progression

«,b—a,b,b+ a, --- need be examined only in part to yield the
smallest positive member r.

In actual practice the quotient ¢ and the remainder r are obtained by
the arithmetic division of a into b.

Definition 1.2 The integer a is a common divisor of b and c in case
alb and a|c. Since there is only a finite number of divisors of any non-zero
integer, there is only a finite number of common divisors of b and c, except
in the case b = ¢ = 0. If at least one of b and c is not 0, the greatest
among their common divisors is called the greatest common divisor of b and
¢, and is denoted by (b,c). Similarly we denote the greatest common
divisor g of the integers by, by, - - - , b, not all zero, by (by, by, - - -, by).

Thus the greatest common divisor (b, c¢) is defined for every pair of
integers b, ¢ except b = 0, ¢ = 0, and we note that (b, c) = 1.

Theorem 1.3 If g is the greatest common divisor of b and c, then there
exist integers xq and yq such that g = (b, ¢) = bxy + cy,.

Proof. Consider the linear combinations bx + cy, where x and y
range over all integers. This set of integers {bx + cy} includes positive
and negative values, and also 0 by the choice x = y = 0. Choose
xo and y, so that bx, + cy, is the least positive integer / in the set; thus
I = bxy + cyy.

Next we prove that /|5 and /|c. We establish the first of these, and the
second follows by analogy. We give an indirect proof that /|b, that
is, we assume /tb and obtain a contradiction. From /tb it follows that
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there exist integers ¢ and r, by Theorem 1.2, such that b =1lg + r
with O <r </ Hence we have r=5b—1Ilqg=5b — qbxy + cyg) =
b(1 — gxg) + ¢(—qyo), and thus r is in the set {bx + cy}. This contra-
dicts the fact that / is the least positive integer in the set {bx + cy}.

Now since g is the greatest common divisor of b and ¢, we may write
b =gB, c =gC, and | = bxy + cyy = g(Bxy + Cy;). Thus g|/, and so
by part 5 of Theorem 1.1, we conclude thatg < /. Nowg < /isimpossible,
since g is the greatest common divisor, and so g = / = bxy + cy,.

Theorem 1.4 The greatest common divisor g of b and ¢ can be charac-
terized in the following two ways: (1) it is the least positive value of bx + cy
where x and y range over all integers; (2) it is the positive common divisor
of b and ¢ which is divisible by every common divisor.

Proof. Part 1 follows from the proof of Theorem 1.3. To prove
part 2, we observe that if d is any common divisor of b and ¢, then d|g by
part 3 of Theorem 1.1. Moreover,,there cannot be two distinct integers
with property 2, because of Theorem 1.1, part 5.

Theorem 1.5 Given any integers by, b,,---,b, not all zero, with
greatest common divisor g, there exist integers Xy, X,, - - - , X,, Such that

g = (bl’ bZa cee ,b,,) = ijxj.
j=1

n
Furthermore g is the least positive value of the linear form Z 'b;y; where the
j=1
y; range over all integers; also g is the positive common divisor of by,
by, - - -, b, which is divisible by every common divisor.

Proof. This result is a straightforward generalization of the preceding
two theorems, and the proof is analogous without any complications
arising in the passage from two integers to » integers.

Theorem 1.6 For any positive integer m,
(ma, mb) = m(a, b).
Proof. By Theorem 1.4 we have

least positive value of max + mby
m - {least positive value of ax + by}
m(a, b).

(ma, mb)

It
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Theorem 1.7 [fd|a and d|b and d > O then
b 1
(g, 3) = (@),

If (a, b) = g, then (‘_1, é) -

Proof. The second assertion is the special case of the first obtained by
using the greatest common divisor g of @ and 4 in the role of d. The first
assertion in turn is a direct consequence of Theorem 1.6 obtained by
replacing m, a, b in that theorem by d, (a/d), (b/d) respectively.

Theorem 1.8 If (a, m) = (b, m) = 1, then (ab, m) = 1.

Proof. By Theorem 1.3 there exist integers xg, yo, X;, y; such that
L = axy + myy, = bx; + my,. Thus we may write (ax)(bx;) =
(1 — myg)(1 — my;) = 1 — my, where y, is defined by the equation
Y2 = Yo + y1 — myoy;. From the equation abxyx; + my, = 1 we note,
by part 3 of Theorem 1.1, that any common divisor of ab and m is a divisor
of 1, and hence (ab, m) = 1.

Definition 1.3 We say that a and b are relatively prime in case (a, b) = 1,
and that ay, a, - - -, a, are relatively prime in case (a;, a5, -+, a,) = 1.
We say that ay, ay, - - -, a, are relatively prime in pairs in case (a;,a;) = 1
foralli=1,2---,nandj=1,2,---,nwithi # j.

The fact that (a, b) = 1 is sometimes expressed by saying that @ and b
are coprime.

Theorem 1.9 For any x, (a, b) = (b, a) = (a, —b) = (a, b + ax).

Proof. Denote (a,b) by d and (a,b + ax) by g. It is clear that
(b,a) = (a, —b) = d.

By application of Theorem 1.1, parts 3 and 4, we obtain d|g, g|d and
d=g.

Theorem 1.10 If c|ab and (b, ¢) = 1, then c|a.

Proof. By Theorem 1.6, (ab, ac) = a(b, c) = a. But c|lab and c|ac,
and so c|a by Theorem 1.4.

Given two integers b and ¢, how can the greatest common divisor g
be found? Definition 1.2 gives no answer to this question, and neither
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does Theorem 1.3 which merely asserts the existence of a pair of integers
xo and y, such that g = axy + by,. If b and c are small, values of g, x,
and y, can be found by inspection. For example, if & = 10 and ¢ = 6,
then it is obvious that g = 2, and one pair of values for x, y, is 2, — 3.
We now state an algorithm which gives a general method for finding the
value of g and also values of x; and y,. By Theorem 1.9, (b, ¢) = (b, —c¢),
and hence we may presume c¢ positive, because the case ¢ = 0 is very
special: (b, 0) = |b|.

Theorem 1.11 The Euclidean algorithm. Given integers b and ¢ > 0,
we make a repeated application of the division algorithm, Theorem 1.2,
to obtain a series of equations

b=cq +ry, 0<r<ec
C=riq, + ry O<ry<ryg,

ry =ryg; +rs 0<ry<ry,

Fj—p = rj—1q; + Iy, 0<r<rjy,

rj—1 = rj9j+1-
The greatest common divisor (b, c) of b and c is r;, the last non-zero remainder
in the division process. Values of xy and y, in (b, ¢) = bxy + ¢y, can be
obtained by eliminating ry, r, - - - , r;—1 from the set of equations.

Example. b = 963, ¢ = 657.

963 = 657 -1 + 306
657 = 306-2 + 45
306 = 45-6 + 36
45= 36-1+ 9
36 = 9-4

Thus (963, 657) = 9, and we can express 9 as a linear combination of 963 and
657 by eliminating the remainders 36, 45, and 306 as follows:

9 =45 — 36
= 45 — (306 — 45 - 6)
= —306 + 7-45

—306 + 7(657 — 306 - 2)
= 7-657 — 15 - 306
7657 — 15(963 — 657)
= 22657 — 15-963.

Proof. The chain of equations is obtained by dividing ¢ into b, ry
into ¢, rp into ry, - - -, r; into r;—;.  The process stops when the division is
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exact, that is when the remainder is zero. Thus in our application of
Theorem 1.2 we have written the inequalities for the remainder without an
equality sign. Thus, for example, 0 < r; < ¢ in place of 0 = r; < ¢,
because if r; were equal to zero, the chain would stop at the first equation
b = c¢q,, in which case the greatest common divisor of b and ¢ would be c.

We now prove that r; is the greatest common divisor g of b and c.
Since g|b and g|c, we see that g|r; by the first equation of the chain.
Since g|c and g|r; we see that g|r, by the second equation. Continuing
by mathematical induction we find that g|r;. On the other hand, the final
equation implies that r;|r;_;. This, together with the next to last equation,
implies r;|r;,_,. Continuing by mathematical induction, we conclude that
rjlb and r;lc. By Theorem 1.4, r;|g. Hence g = r; by Theorem 1.1.

To see that r; is expressible as a linear combination of b and ¢, we need
merely eliminate r; from the first two equations of the chain, then elim-
inate r, from this and the third equation. Proceeding by successive
eliminations of r3, ry, - - - , r;_;, we obtain r; in the form bx, + cy,.

Definition 1.4 The integers ay, a,, - - -, a,, all different from zero, have
a common multiple b if a;|b for i =1,2,---,n. (Note that common
multiples do exist, for example the product aa, - - - a, is one.) The least
of the positive common multiples is called the least common multiple, and
it is denoted by [ay, a,, -+ -, ay,).

Theorem 1.12 If b is any common multiple of ay, a,,---,a,, then
lai, ay, - - -, a,)|b. Thisis the same as saying that if hdenotes [ay, a,, - - - ,a,],
then 0, +h, +2h, +3h, - - - comprise all the common multiples of
ai, dz, c -, a4,

Proof. Let mbe any common multiple and divide m by A. By Theorem
1.2thereis a quotientgand a remainder r suchthatm = gh + r,0 < r < h.
We must prove that r = 0. If r # 0 we argue as follows. For each
i=1,2,---,n we know that g;|h and a;|m, so that g;|r. Thus r is a
positive common multiple of ay, a,, - - -, a, contrary to the fact that A is
the least positive of all the common multiples.

Theorem 1.13  Ifm > 0, [ma, mb] = m[a, b]. Also[a, b]- (a, b) = |ab|.

Proof. Since [ma, mb] is a multiple of ma, it is a fortiori a multiple of
m, and so can be written in the form mh;. Denoting [a, b] by h,, we
note that a|hy, b|hy, am|mh,, bm|mh,, and so mh;|mh, by Theorem 1.12.
Thus Ay|h,. On the other hand, am|mh,, bm|mh,, a|hy, blh, and so,
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hy|hy.  We conclude that h; = h, and thus the first part of the theorem
is established.

It will suffice to prove the second part for positive integers a and b,
since [a, —b] = [a, b]. We begin with the special case where (a, b)) = 1.
Now [a, b] is a multiple of @, say ma. Then b|ma and (a, b) = 1, so by
Theorem 1.10 we conclude that b|m. Hence b < m, ba < ma. But ba,
being a positive common multiple of 4 and a cannot be less than the
least common multiple, and so ba = ma = [a, b].

Turning to the general case where (a, ) = g > 1, we have ((a/g), (b/g)) = 1
by Theorem 1.7. Applying the result of the preceding paragraph, we

obtain
[e é](e 1_’) _ab
g 81\8 & g8

Multiplying by g2 and using Theorem 1.6 as well as the first part of the
present theorem, we get [a, b] (a, b) = ab.

PROBLEMS

1. By using the Euclidean algorithm find the greatest common divisor (g.c.d.)
of
(a) 7469 and 2464; (b) 2689 and 4001;
(c) 2947 and 3997; (d) 1109 and 4999.

2. Find the greatest common divisor g of the numbers 1819 and 3587, and then
find integers x and y to satisfy
1819x + 3587y = g.

3. Find values of x and y to satisfy
(@) 243x + 198y = 9
(b) 71x — 50y = 1
(c) 43x + 64y = 1
(d) 93x — 81y =3
(e) 6x + 10y + 15z = 1.

4. Find the least common multiple (1.c.m.) of (a) 482 and 1687; (b) 60 and 61.

5. Prove that the product of three consecutive integers is divisible by 6; of
four consecutive integers by 24.

6. Exhibit three integers that are relatively prime but not relatively prime in
pairs.

7. Two integers are said to be of the same parity if they are both even or both
odd; if one is even and the other odd, they are said to be of opposite parity,
or of different parity.. Given any two integers, prove that their sum and
their difference are of the same parity.



