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PREFACE

This volume grew from a Special Session in Mathematical
Physics organized as a part of the 774th Meeting of the American
Mathematical Society in Boulder, Colorado, 27-29 March, 1980. The
organizers attempted to include a mix of mathematicians, physi-
cists and chemists. As interest in the session increased and as
it became clear that a significant number of leading contributors
would be here, we were offered the opportunity to have these pro-
ceedings published by Plenum Press.

We would like first to express our thanks to Plenum Press,
to the American Mathematical Society, and to the University of
Colorado Graduate School, and in particular, respectively, to
James Busis, Dr. William LeVeque, and Vice Chancellor Milton
Lipetz, for their help in this undertaking. We would also like
to thank Burt Rashbaum and Martha Troetschel of the Department of
Mathematics and Karen Dirks, Donna Falkenhein, Lorraine Volsky,
Gwendy Romey, and leslie Haas of the Joint Institute for Labora-
tory Astrophysics for their excellent help in the preparation of
these proceedings.

The session took on an international character, representing
the countries Federal Republic of Germany, India, Belgium, Peoples
Republic of China, Switzerland, Iran, Mexico, German Democratic
Republic, England, and the United States. In all there were fi-
nally 37 speakers and all have contributed to this volume. The
success of the meeting is above all due to them.

We chose to mix, rather than separate, the talks and disci-
plines, in order to promote interaction and appreciation. The
contributions are presented here in the same order as they were
given at the meeting.

Thus this volume is in some respects an accident, born of a
mixing process which began in the pure state of a special session
at a regional meeting of a mathematical society and which in its



vi PREFACE
eventual chaos pulled in thirty-seven mathematicians, chemists,

and physicists to a final three-day reaction amid a swirling snow-—
storm that would not stop until the encounter was over. ‘

Boulder, November, 1980 Karl E. Gustafson
Departments of Mathematics and Chemistry William P. Reinhardt
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TOTAL CROSS SECTIONS IN NON-RELATIVISTIC SCATTERING THEORY

Volker Enss

Institut fir Mathematik
Ruhr-Universitédt
D-4630 Bochum 1, F.R. Germany

and
Barry Simon

Departments of Mathematics and Physics
Princeton University
Princeton, N.J. 08544, U.S.A.

ABSTRACT

Using time-dependent geometric methods we obtain simple

explicit upper bounds for total cross sections o in potential-
tot

and multiparticle-scattering. Otot is finite if the potential

decays a bit faster than r-2 (in three dimensions) or if weaker
direction dependent decay requirements hold. For potentials with
support in a ball of radius R bounds are given which depend on R
but not on the potential.

We obtain upper bounds on Otot for large coupling constant A,

the power of A depending on the falloff of the potential. For
spherically symmetric potentials the variable phase method gives
also a lower bound growing with the same power of A.

In the multiparticle case for charged particles interacting
with Coulomb forces the effective potential between two neutral
clusters decays sufficiently fast to imply finite total cross
sections for atom-atom scattering.

We reexamine the definitions of classical and quantum cross
sections to discuss some puzzling discrepancies.

1



2 V. ENSS AND B. SIMON
1. OUTLINE

The total scattering cross section in quantum mechanics is a
simple measure for the strength of a potential when it influences a
homogeneous beam of particles with given energy and direction of
flight. It can be easily measured in experiments, therefore various
approximation schemes have been developed for its calculation. On
the other hand relatively little attention has been paid to a mathe-
matically rigorous treatment, probably because it is a rather
special quantity derived from basic objects like the scattering am-
plitude or the scattering operator S. Moreover various assumptions
and estimates were motivated by technical rather than physical
reasons. In contrast to the conventional time independent approach
Amrein and Pearson [ 1 ] used time dependent methods to obtain new
results. In Amrein, Pearson,and Sinha [ 2 ] this was extended to
prove finiteness of the total cross section in the multiparticle
case if all pairs of particles which lie in different clusters
interact with short range forces.

In our approach we add geometric considerations to the previous
ones. The main bounds are derived by following the localization of
wave packets as they evolve in time. This method is both mathemati-
cally simple and physically transparent. Nevertheless it allows to
recover or improve most results with simpler proofs. We need not
average over directions but we keep the direction of the incident
beam fixed. The main defect of the geometric method so far is that
we have to average over a small energy range; our bounds blow up
in the sharp-energy limit. Consequently we get poor bounds for the
low energy behavior or (connected by scaling) for obstacle scatte-
ring with the radius going to zero.

In Section 3 we determine the decay requirements for infinite-
ly extended potentials which guarantee finite total cross sections
both for the isotropic and anisotropic cases. They are close to
optimal. We obtain explicit bounds which have the correct small
coupling and high energy behavior. The Kupsch-Sandhas trick is used
in the next section to give a bound independent of the potential if
the latter has its support inside a ball of radius R. The bound has
the correct large R behavior.

One of our main new results combines the two -bounds to
establish a connection between the decay of the potential at infi-
nity and the rate of increase of the total cross section in the
strong coupling limit (Section 5). The variable phase method gives
lower bounds with the same rate of increase for spherically
symmetric potentials.
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The main advantage of time dependent (and geometric) methods
is that two cluster scattering is almost as easy to handle as two
particle (= potential- ) scattering. One has to use a proper effec-
tive potential between the clusters which may decay faster than the
pair potentials due to cancellations. For a system of charged
particles interacting via Coulomb pair potentials the effective
potential between neutral clusters (atoms) decays fast enough to
give a finite total cross section for atom-atom scattering (inclu-
ding rearrangement collisions and breakup into charged clusters).
This new result is derived in Section 7.

In quantum mechanics textbooks usually the classical total
cross section is defined first and then the quantum total cross
section is derived by analogy. Therefore it is puzzling that both
quantities differ considerably even if the quantum corrections
should be small. E. g. the quantum cross section is twice as big
as the classical one for scattering from big hard spheres
("shadow scattering"), even when h -~ 0 .

In Section 2 we examine the limits involved in the derivation
of the guantum total cross section and show that it is basically
a pure wave- (and not particle-) concept. This suggests our defi-
nition of the quantum total cross section (2.5), which agrees with
the traditional one for suitable potentials. (Or one might use

(2.5) as an equivalent expression for Otot which is convenient for

estimates.) This point of view explains naturally the discrepancies;
we discuss some aspects of the classical limit in Section 6.

For detailed references to earlier and related work see [1,2,
8, 11 ]. We restrict ourselves here to three dimensions, the results
for general dimension as well as various refinements and extensions
can be found in [ 8 ].

One of us (V.E.) would like to thank the Institute for Advanced
Study, Princeton, for its hospitality and support under the
Albert Einstein visiting professorship endowed by the Federal
Republic of Germany and for a travel grant provided by
Deutsche Forschungsgemeinschaft. Another of us (B.S.) acknowledges
partial support by the National Science Foundation under Grant
No. MCS 78-01885.

2. THE DEFINITION OF CLASSICAL AND QUANTUM TOTAL CROSS SECTIONS

When scattering experiments are performed with microscopic
particles like atoms, electrons, nuclei, then (in contrast to
billard balls) it is practically impossible to ohserve the time
evolution of individual projectiles. We have to restrict ourselves
to very few observables which can be measured well enough,
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e. g. the direction of flight of the particle when it has passed the
target. This direction is asymptotically constant, thus there is
enough space and time available to measure it with arbitrary preci-
sion. In classical physics where the possibility to prepare partic-
les with a given trajectory is not restricted by basic principles,
the scattering angle depends strongly on the impact parameter. If
the latter cannot be controlled the next best thing is to use a
homogeneous beam of incoming particles and to observe the distri-
bution of the outgoing particles over the scattering angles. This
is the classical differential choss section. Let the incoming beam
consist of particles flying in the direction & with momentum p

and a given density (= number of particles per unit area orthogo-
nal to &); then one defines:

number of particles deflected into dfi
density of particles

Oclass(p'e;dﬂ) -

where d2 does not contain &. Integrating over the outgoing
directions yields the classical total cross section:

S o(p,&;d)
s2

Otot,class(p'e)

number of deflected particles
density of particles

(If one thinks of an experiment running forever one should under-
stand the numerators and denominators per given time interval.)
Note that the idealization of a beam of finite density which is
homogeneous in the plane perpendicular to the beam direction g,
necessarily involves infinitely many particles for two reasons.
First one would need infinitely many particles per unit area, but
this is compensated by the denominator in the definition of the
cross section. The second infinity is more delicate which comes
from the infinite extension of the beam. If the target has finite
size (potential of compact support) then only the particles which
hit the target can be deflected, the infinitely many particles which
miss the target go on into the forward direction & and won't be
counted. (The infinite extension of the beam allows to specify the
beam independent of the size and localization of the target.)
Excluding one single direction from the observation we have singled
out the finitely many particles of interest (for finite density)
out of the infinitely many incoming. This prevents us from measu-
ring the total cross section exactly if the incoming beam cannot
be prepared with all particles having the same direction. The
(idealized) concept of the total cross section requires for its
definition that there are beams of incoming particles with a sharp
direction. On the other hand it is irrelevant whether beams with
sharp energy (or modulus of the momentum p) are available or not.
We will use this freedom below.
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Quantum mechanical scattering states for potentials vanishing
at infinity are known to behave asymptotically like classical wave
packets. Therefore it is reasonable to extend the notion of cross
sections to quantum mechanics. However, a further limit is involved
because there are no states with a sharp direction in the quantum
mechanical state space. Let the z-axis be in the beam direction &,
then a sharp direction would mean that p, = py = 0 . By the uncer-
tainty principle this implies infinite extension of the states in
the x-y-directions. Thus the infinite extension of the state per-
pendicular to &, which might look unnecessary in the classical case,
is forced upon us in quantum scattering. We will have to handle wave
functions which are constant in the plane perpendicular to &, there-
fore the quantum cross section behaves like a quantity characteris-
tic for classical waves rather than classical particles for any
h > 0 . A classical particle approximation would require a wave
packet well concentrated compared to a length typical for the po-
tential. Thus it is no longer mysterious that in the classical
limit (h - 0) the guantum cross section need not converge to the
classical one (e. g. shadow scattering off hard spheres).

Another peculiarity of the classical cross section is its dis-
continuity under small changes of the potential. Consider e. g.

X -r,r] ¥

V. 1Y = +

L X1y, 2) (a+bx) X~y ,¥] (z) X[ -R,R] (x)
for some parameters a,b,r,R where r <<R . If the beam direction is
along the z-axis (near the z-axis) for b = 0 the total cross section
is zero (tiny) but for any b # 0 is jumps to 4R2(% 4R2) . If one
could easily count the particles which have been influenced by

> 0 i inuity of
V(e. g.time delay for a ) the discontinuity o Otot,class

at b = 0 would disappear and it would always have the size of the
geometric cross section 4R2, For such a potential with b = 0 the
quasiclassical limit h - 0 of the quantum cross section does not
converge at all!

Following the above considerations about the quantum cross
section as a wave limit we use for its definition "plane wave
packets" which are chosen to describe waves with a sharp direction
of propagation & parallel to the z-axis, but they are normalized
wave packets in the longitudinal direction, thus being as close
as possible to a Hilbert space vector. For a given direction &
the plane wave space hA is isomorphic to (and henceforth identi-

fied with) L2(12,dz). The configuration space wave function is

g(x,y,z) = g(z) with flg(z)l2 dz = 1. (2.1)
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In momentum space we denote by a(k) the one-dimensional Fourier-
transform

Y = o2 fhm e gl (2.2)

corresponding to the three-dimensional Fourier transform

>

- —'\1
gk) = g(kz)(2ﬂ) G(kx) 5(ky). (2.3)
Since a beam should hit the target from one side only we assume:
supp (k) C (0,=), (2.4)
>
which implies in (2.3) kz = lkl=: k

The scattering operator S is the unitary operator which maps
incoming states to the scattered outgoing waves, it is close to one
on states which are weakly scattered. (S - 1)g corresponds to the
scattered part of the wave g. The probability to detect a scattered
particle is then I (5-1)gl2 where the norm is that of the Hilbert
space H = L2(I{ ) . Thus we deﬁine as the quantum mechanical
fotal cross section

o - 8

R n 2 _ 2
0 op (ki@ lg(k)! ©“ak = I (s-1)gl ", (2.5)

where g € hé with (2.4). We will show below that for a class of

potentials with suitable decay properties S-1 extends naturally
from an operator on # to a bounded map from hé into ¥, then the

definition makes sense. We average over the energy of the incident
beam but keep the direction fixed. (See also the similar construction
in [14].) Certainly we have to verify that our definition agrees

with the conventional one given below.

Within the time independent theory of scattering for potentials
with sufficiently fast decay the solutions of the Lippman Schwinger
equation have the asymptotic form

$(k,x) ™ expl K - ) + £(k;kK) Efgéﬁﬂiﬂi-

f(k;x<+k) is the continuous on shell scattering amplitude.
Equivalently the kernel of S-1 in momentum space is

o e i 2 2 A gt
(s-1) (k' ,k) = S(k'“/2m - k°/2m) £ (k; k'<k)
2mm
- -> =
where k = k/k, k = |kl , etc. Then
o . (k,8) = rae'l £(k;a'<a)l 2, (2.6)

tot
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The physical motivation for this choice as given in most+tex§books
on guantum mechanics uses the "obvious" fact that exp(i k - x)
describes an incoming homogeneous beam of particles with momentum
k, direction k and density one (or (2m) ) particle per unit area,
similarly for the outgoing spherical wave.

More careful authors give the following time dependent justi-
fication. Let ¢in(k) be the quare integrable) wave function of a
single incoming particle with momentum support well concentrated
around a mean value q . The corresponding outgoing state has a
momentum space wave function

IRy = (s ot @Y = sadk sk o) +

+ 2dek6 2 fom-x?/2m) £GR'<R) oK) . (2.7)

The "scattering into cones" papers [6, 9 ] show that the asympto-
tic direction of flight is k for the incoming and k' for the out-
going state. The first summand in (2.7) is then identified as

"not deflected" and for continuous (or not too singular) f's the
second term gives the deflected part. Although this splitting is
natural it cannot be justified by observations for directions lying
in the support of ¢1n (R) . Under this assumption the probability
w($1) that a particle with incoming wave function $i0 will be
deflected, is

w(¢in)=fd3k'I5%;»fd3k 5 (k' 2/2m-k2/2m) £ (k; k'<x) 6P ) | 2 =

ing 2
=l(s-1)¢ 17,
To represent a homogeneous beam one translates the incoming state
by a vector 3'1n the plane orthogonal to the mean direction q,

a k
¢; X) = e -1 ¢ln(k), and one sums up the contributions for

> 2
different a's. fd"a represents a homogeneous beam with particle
density one per unit area. The resulting number of deflected par-
ticles is then

2 in, _
fa%a w(¢Z) = o,  (67) (2.8)
= fd3k(ﬁ-&)'1 ranl £ (k<R 1 2 I¢i”(§)lz.
in > , 2 > > A
In the limit ¢~ (k)!“ - §(k-q) expression (2.6) for o (q,9)

in >, 2 n 2 BEt
is recovered and | ¢ (k)7 > Sk Igk)! "~ yields

Jdk Otot(k;é)la(k)|2, the left hand side of (2.5). Note that the

Y
summation over a's is incoherent, we have added probabilities and
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not states, because we are interested only in interactions between
the target and single particles, interference between particles in

the beam has to be eliminated.

Let us now calculate the cross section according to our defi-
nition.

ll(s—1)gll2 = fd3k'l—3—-fd3k 6(k'2/2m—k2/2m)
2Tm
£k R'<R) (2m) 8 (k)& ()12

Tdke e s areey] 2 gyl 2,

Il

Thus our definition coincides with the conventional one if the
scattering amplitude is continuous (or not too singular).

At first glance it seems strange that the incoherent super-
position in (2.8) yields the same result as the coherent super-
position of wave packets with strong correlations which forms the
plane wave-packets. The following heuristic argument easily ex-
plains the phenomenon. Since (S-1)g € L2(123) the action of S-1
"localizes", it essentially annihilates the parts of the state
which lie beyond some radius r. Let R »r and use in the incoherent
case (2.8) the normalized wave function
-1

g(z) (2R) X[ -R,R] (x) X[ R, R] (v)

i =
whqse+(3—dimensional) Fourier transfgrm ¢ln(k) obeys
|¢Jln(k)|2 -> |r<\j(k)|2 8§(ky) as R > » (g is the 1-dim. Fourier trans-

form) . Then

in iny 2 =2 2
= Il (s- e ® Il (s- Il | |
w(¢g ) (S 1)¢3 N4 (2R) (s-1)g for a1,2 <R
0 otherwise
and
2 in R R iny 2 2
fa%a w(es™ % faa. fda. I (s-1)¢5 1% % I (s-1)gl
a 1 2 3
-R -R
The sharp direction - limit forces us to use states which are

eventually constant in an area much larger than the localization
region of S-1. Up to negligible boundary terms all contributions
become parallel and the properly normalized coherent and incohe-
rent superpositions do not differ.

In Section 6 we will return to the comparison of the wave
picture and particle picture when we discuss the classical
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limit. There we will explain why it is natural, although it looks
unnatural, that the quantum cross section of a hard sphere is

twice the corresponding one for classical particles ("shadow scatte-
ring"). In the same section we will explain why classical cross
sections are generally infinite for potentials with unbounded sup-
port although the quantum cross sections may be finite.

3. THE BASIC ESTIMATE FOR O
tot
>
We assume in this section that the potential V(x) is a per-

turbation of the kinetic energy HO = —E-A with Ho—bound smaller

than 1(we have set h=1 and the particle mass m=1, therefore momenta
and velocities coincide). If the potential is of short range (we
will impose stronger decay requirements shortly) then the isometric
wave operators
< i Ht -i H
oF = s - lim o* Ht 71 Hot
t>+
exist and are complete, the S-operator
- % _+
S = (@) Q

is unitary and on states in the domain of Ho the following "inter-
action picture" representation holds:

s-1 = @)1t - Q7

oo

. Cd .
= @ fag e °F pyje - Y67, (3.1)

Cook's estimate gives
I(s-1yol < f at lv e * Hobsl | (3.2)

2 3
Let & € ' = L° (R ) be an approximating sequence of states which

tends to the plane wave packet g as R - «. For a suitable class of
potentials we will show that

o)

-i Hpt

lim sup fat v e (®R|—®R)H =0 (3.3)
R R'>R -
which implies by (3.2) convergence in # of lim (S—1)®R =: (S-1)g
and the finite bound R

I (s-1)gl < fat v e+ Hotql

—0

. (3.4)



