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Preface to the English Edition

Three years have passed since the publication of the Russian edition of this book,
during which time the method described has found new applications.

In [26], the author has introduced the concept of the periodic product of two
groups. For any two groups G, and G, without elements of order 2 and for any
odd n > 665, a group G, @ G, may be constructed which possesses several in-
teresting properties. In G, @ G, there are subgroups G, and G, isomorphic to
G, and G, respectively, such that G, and G, generate G; @ G, and intersect
in the identity. This operation “®’ is commutative, associative and satisfies
Mal’cev’s postulate (see [27], p. 474), i.e., it has a certain hereditary property for
subgroups. For any element x which is not conjugate to an element of either G,
or G,, the relation x" =1 holds in G, @ G,. From this it follows that when
G, and G, are periodic groups of exponent n, so is G; @ G,. In addition, if G,
and G, are free periodic groups of exponent n the group G, @ G, is also free
periodic with rank equal to the sum of the ranks of G, and G,. I believe that groups
having many interesting properties can be constructed using this notion of periodic
product. For example, it has been proved recently that a periodic product G; @ G,
is a simple group if and only if each of the groups G, and G, coincides with the
subgroup generated by its #-th powers.

Using a modification of our methods, one can prove that the word problem and
the conjugacy problem are solvable for any finitely presented group which has only
defining relations of the form A” = 1 with elementary periods 4 and given odd
n > 665.

A contradiction within the system of parameter conditions, on which Britton
based his argument in [25], was demonstrated in the introduction to the Russian
edition. It was clear to me at that time that this mistake was connected with the
principal difficulties inherent in the Burnside Problem, and would prevent Britton
from completing his proof with any ease. In fact, Britton has not yet published a
correction of the mistake in his proof.

In conclusion I would like to express my sincere thanks to Professors James
Wiegold and John Lennox who took on themselves the onerous task of translating
this book.

Moscow, May 15, 1978 S. Adian



Translators’ Preface

We would like to thank Professor Adian for willingly giving us so much of his time
while the translation was being prepared. His help and patience over difficult points
in the Russian were invaluable, and we are very grateful.

Thanks, too, to the University of Bielefeld, in particular to Professor Jens Men-
nicke, for inviting one of us (J.W.) to the Burnside meeting of July 1977. Not only
was this an enjoyable visit, but it also made it possible to have many long discus-
sions with Professor Adian concerning the translation.

Finally, our thanks to Springer-Verlag for their unfailing courtesy at all times.



Preface

To the memory of
P. S. Novikov

This book is based on a special course that the author delivered to the Faculty of
Mechanics and Mathematics at Moscow University in the academic years 1971/72
and 1972/73. It presents a new and improved version of the method of investigating
groups with an identical relation of the form x" = 1 evolved by P.S. Novikov and
the author for solving Burnside’s problem on periodic groups, first published in
the joint paper [5]. The distinguishing feature of that method is the proof of a
large number of assertions (more than a hundred) by simultaneous induction over a
natural parameter. Comparing now with [5], certain new concepts are introduced
here, the definitions of a number of the old concepts are altered somewhat, and a
large number of new lemmas are added. These changes have made it possible to
simplify the proof significantly and to reduce the bound for » from n > 4381 to
n > 665. 1 have succeeded in giving the definitions of all the main concepts, which
also go by induction on a natural parameter, in the first chapter. Undoubtedly, this
facilitates the reading of the book, since the reader has the opportunity of grasping
the definitions of the concepts before beginning to take the proof apart. No special
knowledge is required of the reader. If any difficulties arise in a first reading, it is
recommended that cumbersome proofs of individual lemmas be omitted, and appeal
made to the subject index.

After giving the solution of the Burnside problem, we shall prove the results con-
tained in the author’s lecture to the International Congress of Mathematicians in
Nice [9]. Moreover, a construction is given of finitely generated torsion-free groups
such that every pair of cyclic subgroups have non-trivial intersection. This is a non-
commutative analogue of the additive group of rational numbers. There is reason
to suppose that the methods of the book will find application to the solution of
other problems in the theory of infinite groups.

A recent unsuccessful attempt was made in [25] to give a simpler solution of the
Burnside problem. In that paper the author follows, in the main, the original scheme
proposed by P. S. Novikov in 1959 (see [4]), which was based on a use of transfor-
mations of cyclic words and the method of V. A. Tartakovskii (see [24]). As in [5],
the proof of a large number of the assertions proceeds by simultaneous induction
over a natural parameter. However, several of the concepts that were essential in
[5] are omitted from [25]. For example, it does not contain the concept of mutual
normalisability in given rank, which was central in [5], nor that of cascade of rank
a. In [25] the proof rests on so-called parametric conditions, which involve a system
of some hundreds of equalities and inequalities in 302 parameters. The consistency
of this system is not proved in [25]. More than that, an analysis carried out jointly
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by Ju. I. Hmelevskii, the editor of this book, and myself, shows that the system of
parametric conditions used in [25] is contradictory*.

[25] is therefore erroneous.

I am heartily grateful to Ju. I. Hmelevskii, who read the manuscript with great
care, checked all the proofs, made a number of useful remarks, and was of essential
help to me in the analysis of [25].

*For example, the conditions
uy=u, + rys (p. 145, line 10 from below),
rys > Uy, + 54/e (p.283, line 4 from below),

uy; > l4a + 214/e, where a = &,y + u,; + 6u, (p.221, lines 11 and 12 from below)
give an obvious contradiction: u, > ry; > uy, > u,.



Introduction

In 1902, Burnside [1] formulated the following problem:

“Is every group with a finite number of generators and satisfying an identical
relation x" =1 finite?”

This problem is known as the Burnside problem for groups of finite exponent,
and it remained open for a considerable time. The negative solution was obtained
in a joint paper of P. S. Novikov and the author [5], where it was shown that, for
every odd n > 4381 and every m > 1, there exists an infinite group I'(m, n) on m
generators and satisfying the identical relation x" = 1.

Up to then, a positive answer to the Burnside problem had been obtained for
n < 3 (see [1]), n = 4 (see [2]) and n = 6 (see [3]). The existence of a periodic group
on two generators having no bound on the orders of its elements was established
in [12].

In order to describe the group I'(m, n), a classification of periodic words in a
group alphabet was introduced in [5], and a theory constructed of transformation
of words corresponding to an identical relation x" = 1 for fixed odd n > 4381.

In the first five chapters of this book we present an improved version of this
theory for odd exponent n > 665. On the basis of this theory we prove in Chapter
VI the existence of infinite groups of odd exponent n > 665. In that Chapter we
also give the proofs of all the results about the properties of free groups of odd
exponent n 2> 665 that were published in [6, 7, 8, 10]. Chapter VII contains an ac-
count of the applications of our method to questions not connected with periodic
groups. These applications were published in [10, 11].

The Chapters of the book are divided into sections, and the sections into sub-
sections. Reference to the assertion or definition contained in subsection 16 of §5
of Chapter II, for example, will be made in the form 11.5.16. Reference to the Chap-
ter will not be made within the Chapter itself.

In order to avoid numerous repetitions in the execution of the complicated
simultaneous induction to which Chapters II-V are devoted, we shall not cite the
separate formulations of the inductive assumptions (and we shall not even number
them separately, as was done in [5]). In referring to one or other inductive assump-
tion, we shall directly indicate the corresponding assertion that is formulated and
proved for larger values of the inductive parameter in the succeeding chapters and
sections. For example, if assertion /V.1.7 is encountered in the text at a stage before
it is proved in rank e, this means that the assertion obtained from IV.1.7 on replac-
ing the inductive parameter a by a suitable f << @ — 1 is assumed to be proven at
that stage, in accordance with the inductive assumption. We shall distinguish such
references from all others by writing them in izalics.

All assertions considered are trivial when « = 0. This saves us from special
considerations in verifying the first steps of the induction.
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Chapter I. Basic Concepts and Notation

We shall use the following notation for logical connectives:
3,V the existence and universal quantifiers,

& . conjunction (“and”),
V disjunction (“‘or”
- negation (‘“‘not”),

= implication (“if ..., then, ...”),
&= logical equivalence (“if and only if”").

The symbol = denotes equality by definition, and it is used to introduce nota-
tion for certain expressions.

If X and Y are elements of a set .#, then for brevity we write (X € #) &
Ye#)as X, Y e A

The symbol C is used to denote inclusion of one set in another, U for union of
sets and N for intersection of sets. The empty set is denoted by .

We fix an integer m > 1 and an odd number n > 665, which will be unchanged
for the duration of Chapters I-VI. In addition, we shall use the fixed values of the
following numerical parameters:

p=9 p=17
g=2p,+3=31, g=q,.+p1 =54, g=4q,+ 2p; +2=90.

§ 1. Words and Occurrences
We shall consider words in a group alphabet
s Gy =555 s Ay Y5 875 o505 85 5 ()]

The empty word is denoted by A. Letter-for-letter equality of two words X and Y
is denoted by X = Y.

1.1. Two letters g, and a;! for given i are said to be mutually inverse. If

A= bbb, ... b, ...b_ib

r—1%r »

where each b; is one of the letters in (1), then the word
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b7 L. bt L. bbb,

with (a7!)™ = a,, is called the inverse of A and is denoted by 4~". Clearly, A™' =
E™! D! whenever 4 = DE.

We denote the length of the word 4 by 3(A), that is, d(A4) is the number of
letters comprising 4. In particular, (A1) = 0.

1.2. A word E is said to occur in a word X if there exist words R and Q such
that X = REQ. If the word R (the word Q) is empty, then FE is said to be a start
(an end) of X.

Clearly, one of any two starts of a given word X is a start of the other, and
similarly one of two ends of 4 is an end of the other.

One and the same word £ may occur in a given word X in different places. In
order to distinguish between two different occurrences of E in X we use an extra
symbol *. If X is a word in an alphabet not containing the letter *, and X = REQ,
then we shall call the word R * E * Q an occurrence of E in X.

IfV=Rx Ex Q,wedenote Q"' x E”'x R by V..

The word E is said to be the base of the occurrence R * E % Q. If ¥ denotes the
occurrence R * E x Q, we shall write E = Bas (V).

We shall consider only occurrences with non-empty bases. An occurrence of the
form * E % will be identified with the word E.

Upper-case Latin letters U, V, W, with or without suffices, will be used to de-
note occurrences in words in the alphabet (1).

1.3. Let P * Ex Q and R * D % S denote two occurrences in one and the same
word, i.e., PEQ = RDS. All the relations defined in this subsection are meaningful
only for occurrences in one and the same word.

We shall say that the occurrence P * E * Q is contained in R * D % S if §(R) <
d(P) and 3(S) < 9(Q), that is, if R is a start of P and Sis an end of Q. If in addi-
tion P = R (or Q = S), we say that P * E = Q is a start (or an end) of R x D S,
or else that R « D % S starts (or ends) with the occurrence P * E % Q.

We say that the occurrences P * E * Q and R * D = S intersect if there is an occur-
rence V with nonempty base that is contained in P* E* Q and in R* D x S. We
shall call the maximal such occurrence V (with respect to length of base) the com-
mon part of P+ E x Q and R * D = S, or their intersection. If P x E * Q is contained
in R* D * S, their common partis P x E * Q.

If 3(P) < d(R) and 9(S) < 9(Q), we say that the occurrence P * E x Q lies to
the left of R * D * S, and write P * E* Q < R = D % S. If PE is a start of R, we
shall say that P x E x Q lies strictly to the left of R x D x S, and write P x E* Q £
Rx* D x S.

If Px Ex Q < R=x D =S, then neither of the occurrences P * E * Q and
R * D * S'is contained in the other; conversely, if neither is contained in the other,
then Px Ex < R*D*xSorR*xDx*S < PxExQ.

IfP+xEx*Q« R*D=* S, then Px ExQand R *+ D » S do not intersect;
conversely, if they do not intersect, then either Px Ex Q K R* DxSorR* D % S
K PxE=x Q.

The union of occurrences P * E * Q and R * D * S is the occurrence contain-
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ing both of them that has base of shortest length. Suppose that U is the union of
P+«ExQ and R* D=+ S. If PxE#*Q is contained in R* D xS, then U=
RxD+S. If PxExQ < R+«D=xS,thenP* E+ Qisastart of U,and Rx D« S
is an end of it.

14. Let P+ E x Q and P, * E * Q, be occurrences in words Xand Yand V' =
R % C %= S an occurrence in X contained in P * E * Q. Then there exist words A4
and B such that R = PA, S = BQ and E = ACB. In such a case the occurrence
P A, x C «+ BQ, in Y is denoted by

$(V; P+ Ex Q, P+ Ex Q).

For any two occurrences W and W, with the same base, the function ¥V, =
é (V; W, W,) sets up a one-to-one mapping of the set of occurrences in W onto the
set of all occurrences in W,.

IfV, = ¢(V; W, W)), then V = ¢(V,; Wy, W).

Let W,, W,, W, be occurrences with the same base and suppose that V; is
contained in W,. If V, = ¢(V;; W,, W,) and V, = ¢(V,; W,, W,), then V, =
¢ (Vi; Wy, Wy).

Clearly, the function V; = ¢(V; W, W,) preserves the relations <, « and
carries the common part (union) of two occurrences contained in W to the com-
mon part (union) of their images in W,.

§ 2. Periodic Words

For any integer ¢ > 0, let A’ stand for the word A4. ..A, with A4 repeated ¢ times.
For t < 0 we set A = (47")™". Finally, for any word 4 we set by definition

A= A.

We shall call a word of the form 4,4'A4,, where A, is a start of A4, 4, is an end
of A and 9(4,4'A,) > 208(A), a periodic word with period A. The set of all periodic
words with period 4 is denoted by Per(4). For empty A4, (or 4,), we call A4 the
left (or right) period of A\ A'A,.

Clearly, if A = B’, then Per(4) C Per(B).

2.1. We say that a word B is a cyclic shift of a word A if A = PQ and B = QP
for some P and Q.

Clearly, if B is a cyclic shift of 4, then Per(4) = Per(B). If X & Per(4), B
occurs in X and d(B) = d(A4), then B is a cyclic shift of A4.

2.2. If AB = BA, then there is a word D such that A = D' and B = D’ for some
t,r> 0.

We may assume that 9(4) > a(B). If B is empty, then B = A°. So we assume
that B is nonempty and that the assertion is true whenever g(4B) < j, and prove
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it for 3(AB) = j. Suppose that AB = BA. Then for some C we have A = BC and
CB = BC. Since 8(CB) = j — d(B), the inductive assumption gives that C = D*
and B = D’ for some D, k and r. In that case 4 = D**".

23. If A'A' = B'B', where A' is a start of A, B'is a start of B and 3(A'A") >
9 (AB), there exists a word D such that A = D* and B = D’ for some k and s.

Suppose that 3(4) > d(B). Since A is a start of B’B', we have 4 = BB,
where r; > 0 and B = B,B,. Cancelling 4 on the left of the original equality, we
get A 'A' = B,B""1"! B', where now B,B, is a start of the left hand side and
B,B, is a start of the right hand side. Thus B,B, = B,B,;. By 2.2, there exists a
word D such that B, == D*1 and B, = D*2for some s, s,. We can take s = s, + s,
and k=r; (s; + 5,) + 5.

2.4. Suppose that X & Per (4). The occurrence of P * E * Q in X is said to be
interior relative to the period A if 3(P) > 8 d(A) and 9(Q) > 8 d(A4). We denote the
set of all occurrences of this sort in X by Inn (X, A).

2.5. Suppose that X € Per (A4) again. Two occurrences V = FP * E * QG and
W = FR * E * SG in one and the same word FXG, where F and G are arbitrary
words, are said to correspond in phase relative to the period A if there is an integer
r such that

0(R) — a(P) =r a(A) .

The words F and G here may be empty. For r = 0 we have that W = V. If r > 0
(or r < 0) we shall say that W is the result of shifting V to the right (to the left) by
r periods A.

We denote by Corr, (V, W) the predicate that is valid if and only if ¥ and W
are occurrences in some word FXG that correspond in phase relative to period 4,
where now X & Per (A4). It is clear that the relation Corr, (V, W) is symmetric and
transitive.

2.6. We extend the concept of correspondence in phase defined in 2.5 to oc-
currences in different periodic words with given period. Two occurrences P * E * Q
and R % E x S in the words X & Per(4) and Y & Per(A) are said to correspond in
phase if one of the words P and R is an end of the other and one of Q and S is a
start of the other.

We remark that if U and V are two occurrences in a given word X € Per (4),
then Corr, (U, V) implies that they correspond in phase in the sense just defined if
we take Y = X.

2.7. A word A4 is said to be simple if it cannot be represented in the form D"
for r > 1.

If A is a non-empty word, then there is a simple word B such that A = B’ for some
t> 1.

This is proved by induction on §(4). If 4 is not simple, then 4 = D’ for some
D and some r > 1. Since 9(D) < 3(4), the inductive hypothesis gives the exist-
ence of a simple B such that D = B*, where k > 1. Thus 4 = B’*.

2.8. If AB is a simple word, then BA is simple.
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It is enough to prove this for the case where B consists of a single letter a. As-
sume that a4 = D’, where r > 1. Then for some E, D = aE, so that Aa = (Ea)’.

2.9. Suppose that A'A; = B’B,, where 3(A'A,) > d(AB), A, is a start of A and
B, is a start of B. If A is simple, then B = A* for some k.

Indeed, by 2.3 there is a D such that A = D° and B = D*. Clearly, we may take
s > 0. Since A4 is a simple word, s = 1, that is, D = A.

§ 3. Aperiodic Words

In what follows we shall need an infinite sequence
bys Tas Ty +o 05 B Biggs 5 (2)

whose terms are either 1 or 2, such that for each i/ the word ¢, ¢, ... t; does not
have any occurrence of a non-empty word of the form E3. We mention now a
method of constructing such a sequence, suggested by ArSon [13].

3.1. Consider all permutations of three symbols, 1,2,3:

1 2 3 3 2 1,
2 3 1 1 3 2
31 2 2 1 3.

We call the permutations in the left-hand column odd, and those in the right-hand
column even. The odd permutations are numbered by their first elements, and the
even ones by their last elements. Every even permutation is the mirror image of the
odd permutation with the same numeral.

We shall construct words A, by induction on 7, for i 2> 1. Set

Ay =1.

If the word A4; has been constructed already, and A4; = h; h, ... h,, then we
let A4, stand for the result of replacing every symbol #; in A4, by the even or odd
permutation with numeral /1, according to the parity of /. Let us write down the first
few A;:

A, =123,
123 132 312,
A, = 123 132 312 321 312 132 312 321 231.

wh;
I

We have introduced a triple of symbols here so as to be able to survey the whole
word more easily. It is clear that A4, is a start of 4, ; in all cases.
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3.2. There is no occurrence of a nonempty word of the form EE in any A,, i > 1.

Proceed by induction on i. Suppose that it is true for 4,. Decompose 4,,, into
triples: the number of them is the length of 4,. We shall call the occurrences of
these triples in A4,,, the constituent triples of A4, ,.

By definition of A4, there is no sequence in it of two triples of the same parity.
Moreover, it follows from the inductive assumption that there is no sequence of
two triples with one and the same numeral.

Suppose that 4, , = PEEQ, where E is non-empty. We show by an analysis of
cases that this assumption leads to a contradiction.

Let V=R =xabc* S be the last triple intersecting the occurrence U =
P Ex EQ.

If d(E )= 1, then E is different from a and b, and since E = c, we get that there
is a triple to the right of ¥ and having the same numeral. Consequently 9(E) > 1.

If 3(E) = 2, then E = bc, and then to the right of V there stands a triple of the
same parity. Thus a(E) > 3.

Assume that V is an end of the occurrence P * E = EQ, thatis, E = E, abc and
R = PE,.

Suppose that §(E) = 3j. If j is odd, then the triple abc occurs in the decomposi-
tion of 4, both as an even and as an odd triple. If j is even, then 4, has a subword
of the form D?, where d(D) = j, which contradicts the inductive assumption.

Suppose that d(E) = 3j + 1. Then g(E,ab) is a multiple of three, that is, there
is a triple V; = PEE, * cab * cQ in the decomposition of A4,,,. It is easy to con-
vince oneself in this case that c is a start of E. In fact, if E, is not empty, the triple
immediately to the left of V is of the form PE, * bac * abcEQ, that is, E, = E,ba,
whence it follows by analogy with the preceding case that the triple immediately
to the left of V| is of the form PEE, * cba * cabcQ, etc. But ¢ cannot be a start of
E, since then the word ¢? would occur in 4, ;.

Finally, suppose that (E) = 3j + 2. Then g (E,a) is a multiple of 3, that is, the
decomposition of A4,,, contains a triple of the form PEE, * cba * bcQ, where
E,cb = E,. If E, is not empty, then a is an end of E,. As in the preceding case, we
can convince ourselves that ¢ must be a start of E, which is impossible.

Thus we have shown that ¥ cannot be an end of the occurrence P * E * EQ.
It remains to consider the following two cases:

E = Ea= bcE, = bcE;a 3)
and E= Eab = cE, 5 cE,ab,

where PE, = R. Since these cases are analogous, we may restrict attention to the
first one. Suppose that (3) is satisfied.

If 9(E) = 3j, then P * bc * E,EQ is an end of some constituent triple, that is,
P P,a. Then P, * abcE, * abcE;aQ ends with some constituent triple, which is
impossible, as was proved above.

If (E) = 3j + 1, then by (3), d(bcE,) is a multiple of three. Consequently,
the occurrence P * bcE, * aEQ begins with the triple bca, that is, E, = aE,. Then to
the right of V there stands the triple PEbc * ach * E;Q, that is, E; = abcE;. Thus the
second triple contained in P * bcE, * aEQ also ends with a. In exactly the same way



