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Preface

Molecular bioenergetics is a strongly interdisciplinary field of biochemistry, bio-
physics and molecular biology. It is concerned with how energy derived either from
sunlight or from cellular respiration is primarily transduced into an electrochemical
proton gradient across a coupling membrane, and how this gradient is subsequently
utilised for energy-requiring reactions such as ATP synthesis or active transport. This
field thus intimately involves biological membranes and membrane proteins.
Bioenergetics has traditionally also included the cellular and tissue levels of organi-
sation, as well as diseases. Pathophysiological, or ‘systems’ bioenergetics, is indeed
today a very active research field, which includes studies of reactive oxygen species
(‘oxygen radicals’), apoptosis, mitochondrial diseases, and the process of aging.
However, this book focuses on the physicochemical core of bioenergetics, which in
the last 20 years has advanced greatly by the resolution of 3D structures of several
of the protein complexes that catalyse key energy-transducing reactions in chloro-
plasts, mitochondria, and bacteria.

Molecular bioenergetics is a unique field in many ways. Due to its intrinsic mul-
tidisciplinarity, it is an excellent research arena for students who desire a broad edu-
cation in biochemistry and biophysics, including molecular and structural biology.
Such a comprehensive education is unfortunately becoming rare at this time, perhaps
due to the current strong research focus on genomics and cell biology. Nevertheless,
the necessity of ultimately understanding biological structures and reactions at the
atomic level is obvious, which may give some consolation.

This book is by no means a comprehensive treatise, but rather a ‘snapshot’ of
recent research and the state-of-the-art of this field. Yet, the reader can get a much
broader insight into this and related fields from the extensive citations in each chap-
ter. The book is comprised of 16 articles written by a group of active and authorita-
tive researchers. The emphasis is on structure, and particularly on how the molecular
structures may ‘come alive’ during their bioenergetic function. A functional descrip-
tion (mechanism) on the atomic level goes beyond static structures of single confor-
mational states, and therefore requires a deeper level of understanding, which can be
obtained by time-resolved biophysical methods, by quantum-mechanical and classi-
cal dynamics calculations and simulations, or by trapping series of transient inter-
mediate states and solving their 3D structures, as for the case of bacteriorhodopsin
(see cover picture). Such research is often strongly hypothesis-driven: the formula-
tion of mechanistic models is a strong driving force in science the importance of
which must not be underestimated.

I am very grateful to all the authors for their contributions to this book, to
Dr. Janos Lanyi for kindly providing the cover picture, and especially to Mrs. Annie
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Jacob and Miss Katrina Turner of the Royal Society of Chemistry for their patience
and humour, which made the editor’s work pleasant.

Marten Wikstrom
Helsinki, May 2005
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CHAPTER 1

Principles of Molecular
Bioenergetics and The Proton
Pump of Cytochrome Oxidase

ROBERT B. GENNIS

University of Illinois, Department of Biochemistry, 600 South Mathews Street,
Urbana, IL 61801

1 Introduction: General Principles of
Bioenergetic Systems

All of the bioenergetic enzymes described in this book can couple an exergonic or
free-energy yielding reaction to the electrogenic movement of charged species across
the membrane, generating a protonmotive force. In the case of bacteriorhodopsin, the
driving reaction is the absorption of a photon, for the bc; complex, the oxidation of
ubiquinol by cytochrome c is the driving force, and for the respiratory oxidases, the
reduction of O, to H,O provides the impetus. In this book, the principles utilized by
a number of these systems are detailed with an emphasis on recent structural studies.

It is convenient to classify two classes of mechanisms used to generate a trans-
membrane voltage:

(1) Mechanisms utilizing an oxidoreduction loop.
(2) True ion (proton) pumps.

1.1 Oxidoreduction Loops

The principle of coupling different chemical reactions is central to biology and is
accomplished in a number of ways. Many of the systems that generate a protonmotive
force can be understood in terms of Mitchell’s chemiosmotic oxidoreduction loop.!
This is illustrated by the example shown in Figure 1, which shows a redox loop formed
from the anaerobic respiratory system comprised of formate dehydrogenase and
nitrate reductase enzymes from E. coli. Recently, the structures of each of these two
enzymes were determined.”3 The topology of the catalytic active sites assures that the
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Mo-bisMG| 2H*

Periplasm

Cytoplasm

2H*

NO,™ + 2H*

NO; + H,0

Figure 1 Proposed mechanism for the protonmotive force generating redox loop by nitrate
reductase (NarGHI) and formate dehydrogenase (FdnGHI) from E. coli.’ MQ and
MOQH, are menoquinone and menaquinol, respectively; by, and b, indicate the dis-
tal and proximal hemes, respectively; FS indicates [Fe-S] clusters; Mo-bisMGD is
the molybdenum cofactor. Note that only electrons cross the membrane resulting in
the transmembrane voltage

net reaction results in the generation of a protonmotive force.® Formate dehydrogenase
oxidizes formate on the periplasmic side of the membrane (the positive or P-side) and
electrons are delivered through a series of metal centers to a menaquinone reductase
site located near the cytoplasmic surface (the negative or N-side of the membrane).
The formate dehydrogenase, thus, separates the oxidative and reductive half-reactions
on opposite sides of the membrane. Protons are released in the periplasm upon formate
oxidation and protons are taken up from the cytoplasm upon the reduction of
menaquinone. The actual charge crossing the chemiosmotic barrier is the electron.

Reduced menaquinol is a neutral, hydrophobic compound and can diffuse freely
within and across the membrane bilayer. The nitrate reductase enzyme has a
menaquinol oxidation site located near the periplasm, whereas the site where nitrate is
reduced to nitrite is located on the opposite side of the membrane. Electrons are trans-
ferred across the membrane between these active sites to couple the two half-reactions
catalyzed by the enzyme (see Figure 1). The full reaction of nitrate reductase, therefore,
is coupled to the release of protons in the periplasm, the uptake of protons from the
cytoplasm and the transfer of charges, in the form of electrons, across the membrane.

The net reaction of both of these enzymes together results in the transfer of four
protons from the cytoplasm to the periplasm for each formate oxidized and nitrate
reduced. Points to note are

(1) The actual charges crossing the membrane are electrons and not protons.

(2) The net transfer of protons is due to the vectorial placement of the enzyme
active sites so that the oxidation and reduction half-reactions occur on oppo-
site sides of the membrane.



