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Preface

1. Our aim is to give a survey of results dealing with certain algebraic and
arithmetic questions concerning polynomial mappings in one or several variables.
The first part will be devoted to algebraic properties of the ring Int(R) of poly-
nomials which map a given ring R into itself. In the case R = Z the first result
goes back to G.Pdlya who in 1915 determined the structure of Int(Z) and later
considered the case when R is the ring of integers in an algebraic number field.
The rings Int(R) have many remarkable algebraic properties and are a source of
examples and counter-examples in commutative algebra. E.g. the ring Int(Z)
is not Noetherian and not a Bezout ring but it is a Prifer domain and a Skolem
ring. We shall present classical results in this topic due to G.Pdlya, A.Ostrowski
and T.Skolem as well as modern development.

2. In the second part we shall deal with fully invariant sets for polynomial
mappings ® in one or several variables, i.e. sets X satisfying ®(X) = X. In the
case of complex polynomials this notion is closely related to Julia sets and the
modern theory of fractals, however we shall concentrate on much more modest
questions and consider polynomial maps in fields which are rather far from being
algebraically closed. Our starting point will be the observation that if f is a
polynomial with rational coefficients and X is a subset of the rationals satisfying
f(X) = X, then either X is finite or f is linear. It turns out that the same
assertion holds for certain other fields in place of the rationals and also for a
certain class of polynomial mappings in several variables. We shall survey the
development of these question and finally we shall deal with cyclic points of a
polynomial mapping, i.e. with fixpoints of its iterates. Here we shall give the
classical result of I.N.Baker'concerning cyclic points of complex polynomials and
then consider that question in rings of integers in an algebraic number field.

There are several open problems concerning questions touched upon in these
lectures and we present twenty one of them.

3. This text is based on a course given by the author at the Karl-Franzens
University in Graz in 1991. I am very grateful to professor Franz Halter-Koch
for organizing my stay in Graz as well for several very fruitful discussions. My
thanks go also to colleagues and friends who had a look at the manuscript and
in particular to the anonymous referee who pointed out some inaccuracies.

The work on these lecture notes has been supported by the KBN grant 2
1037 91 01. The typesetting has been done by the author using AApmS-TEX.



Notations

We shall denote the rational number field by Q, the field of reals by R, the
complex number field by C and the field of p-adic numbers by Q,. The ring of
rational integers will be denoted by Z, the set of nonnegative rational integers
by N, the ring of integers of Q, by Z,, the finite field of ¢ elements by F, and
the ring of integers in an algebraic number field K by Z.

By a | b we shall denote the divisibility in various rings and in case of the
ring of rational integers we shall write ¢ || a in the case when ¢ is the maximal
power of a prime which divides a. The same notation will be used for divisibility
of ideals in Dedekind domains. The symbol [0 will mark the end of a proof.
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PART A

Rings of integral-valued polynomials

I. Polynomial functions

1. Let R be an arbitrary commutative ring with unit. Every element f of
R[X], the ring of all polynomials in one variable with coefficients in R, defines
amap Ty : R — R. The set of all maps T obtained in this way forms a ring,
the ring of polynomial functions on R, which we shall denote by P(R). Let
Ir denote the set of all polynomials f € R[X] satisfying f(r) = 0 for all » € R,
and let F(R) denote the set of all maps R — R. The following lemma collects
a few easy facts concerning P(R) and Ip:

LEMMA 1.1. (i) The set Ig is an ideal in R[X] and we have
P(R) ~ R[X]/IR,

(i1) If R is a domain then the equality I = {0} holds if and only if R is
infinite,
(iii) If R = F, then IR is generated by the polynomial X9 — X and

P(R) ~ R[X]/(X9 - X)R[X].

ProoOF: The assertion (i) is evident. If R is infinite then clearly only the zero
polynomial vanishes identically on R. If R is a finite domain then it is a field,
say R = Fg, and the polynomial X? — X vanishes identically. This proves (ii).

The last assertion follows from the remark that if a polynomial vanishes at
all elements of the field Fy then it must be divisible by

[[x-a=x7-Xx. O
a€F,

2. The ring P(R) can be described in terms of certain ideals of R:
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THEOREM 1.2. (J.WIESENBAUER [82]) If R is a commutative ring with unit
element and for j = 0,1,... we define I; to be the set of all a € R such that
there exist co,c1,...,¢j—1 in R with

j=1

az’ +Ec,-zi =0 forallz € R
i=0
then the I;’s form an ascending chain of ideals in R and if for j = 0,1,... we

fix a set Aj of representatives of R/I; containing 0, then every f € P(R) can be
uniquely written in the form

o

Jj=
with a suitable N, a; € Aj and ay # 0 in case f # 0.

ProoF: Clearly the I;’s form an ascending chain of ideals. Assume that our
assertion fails for some non-zero f € P(R). Consider all possible polynomial
representations:

R : fl)=)_djz’ (z€R, dj €R, dm #0)
7=0

and denote by i(R) the maximal index j with d; ¢ A;. Choose now a represen-
tation Ro with i = {(Ro) minimal and write

(1.1) flz)=) dja' + Y a;a,
1=0

J=14i

with d; € A; and a; € Aj for j = 144,2+4,...,m. If a; € A, satisfies a; —d; € I;
then with suitable bg,b;,...,bi_1 € R we have e

i-1
(ai_di)zi..*.z:bjzj =0 for all z € R,

i=0

hence in (1.1) we may replace the term d;z' by
. |—1 3
ai:r' + Z bJIJ,
j=0
contradicting the choice of Rq. O

3. If p is a rational prime then every function Z/pZ — Z/pZ can be
represented by a polynomial. The next theorem describes commutative rings
with unit having this property.

THEOREM 1.3. (L.REDEI, T.SZELE [47], part I) Let R be a commutative
ring with a unit element. Every function f : R — R can be represented by a
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polynomial from R[X], i.e. F(R) = P(R) holds if and only if R is a finite field.

Proor: The sufficiency of the stated condition follows immediately from the
interpolation formula of Lagrange, so we concentrate on its necessity.

If R is infinite and its cardinality equals «, then the cardinality of R[.X]
also equals a but the cardinality of all maps R — R equals a® > a, hence not
every such map can be represented by a polynomial.

Let thus R = {a; = 0,as3,...,a,} be a finite unitary commutative ring of
n elements. If it is not a field, then it has a zero-divisor ¢, since every finite
domain is necessarily a field. Put

n

9(X) = H(X - a;),

i=1
and observe that for all a € R one has g(a) = 0. This shows that if a map
R — R can be represented by a polynomial F, then F can be chosen to have
its degree < n — 1, since F' and F mod g represent the same function on R. The
number of all maps R — R and the number of all polynomials of degree < n—1
both equal n™ and hence it is sufficient to find a non-zero polynomial of degree
< n — 1 vanishing on R. The polynomial

f(X)=c][(X - a)
1=2

can serve as an example since it evidently vanishes at non-zero arguments and
moreover we have f(0) = (—1)""!casas- - a,, but as c is a zero-divisor there is
an element a; # 0 with ca; = 0 and thus f(0) = 0. O

(This argument can be modified to cover also rings which do not have a
unit element. Cf. L.REDEI, T.SZELE [47], part I, p.301).

4. Consider the following example:
Let R = Z/4Z be the ring of residue classes mod 4 and put

f(z):{o ifz=0,1

1 ifz=23.
The function f cannot be represented by a polynomial over R, since otherwise
we would have

1=f(3)=f(1)=0 (mod 2).

However the polynomial

X(x —1))\?
X)=|—F7F——
o) = (XE=1)
attains integral values at integers and it induces on R the function f.
This situation is a special case of the following construction:

Let R and S; C S be commutative rings and let F : S; — R be a
surjective homomorphism. If a polynomial f € S»[X] satisfies



(i) F(S1) C 51,
and
(ii) If s,t € S1 and F(s) = F(t) then F(f(s)) = F(f(t)),
then f induces a map f : R — R defined by
f(r) = F(f(s)),
where s is any element of S; with F(s) = r.

Following L.REDEI, T.SZELE [47] we shall say that S, is a representation
ring for R, provided there exists S; C S; such that every map g : R — R
equals f for a suitable f € S;[X] satisfying (i) and (ii). We shall also say that
the pair < S;, Sz > is a representation pair for R.

THEOREM 1.4. (T.SKoLEM [40]) If ¢ = p* is a prime power then < Z,Q > is
a representation pair for Z /qZ.

PrOOF: In case k = 1 the assertion follows from Theorem 1.3. Assume thus
k > 2. The main step of the proof is embodied in the following lemma:

LEMMA 1.5. Ifq = p* with prime p then there exists a polynomial ®(X) € QlX]
which is integral-valued at the integers and satisfies

®(z) = 1 (mod q) ifq divides z,
T | 0 (mod ¢) otherwise.

ProoOF: Let ry,ra,...,r: be a complete reduced system of residues mod ¢ and
put
t
X X X )
¥(X)= X—T,' - =Py ) sEE -7,
== () =) (G2) =) ((55)
®(X) = ¥(X)>.

If £ € Z is divisible by ¢, then all numbers

0)-(2)

are divisible by p. Now observe that if r runs over all residues mod ¢ not di-
visible by p and a is divisible by p, then a — r runs over all residues mod ¢ not
divisible by p and this gives

Y(z)= (ry---r)* = +1 (mod g¢),

and
®(z) =1 (mod g).

If however ¢ does not divide € Z, then we may write z = p™y with 0 < m < k

and y not divisible by p. Since, as is easily checked, ;n is not divisible by p,



we have with a suitable 2

(2)=n s

hence ®(z) = ¥?(z) =0 (mod ¢). O
To conclude the proof of the theorem observe that if the map f: Z/qZ —

Z/qZ is arbitrary and a; is a representative of the residue class f(i) mod ¢, then

the polynomial
q-1

F(X) =) ai®(X i)

i=0

represents f. O

(L.REDEI, T.SZELE [47] showed also that the ring of all rational numbers
whose denominators are powers of a prime p can serve as a representation ring
for Z/qZ where q is a power of p. They proved moreover that every ring whose
additive group is a cyclic p-group has Q for its representation ring).

It should be noted that the analogue of Theorem 1.4 fails for composite inte-
gers which are not prime-powers. Indeed, assume that one can find a polynomial
f € S(Z) such that

f(z) = 1 (mod 6) if 6 divides z,
~ 1 0 (mod 6) otherwise.

If we write ()
fiox) = Bl
q
with g € Z[X] and ¢ € Z then

(z) = q (mod 6q) if 6 divides z,
IE=10 (mod 6q) otherwise.

Observe that 6 | ¢ because if p = 2 or p = 3 then
0=g(p)=9(6) =q (mod p)

and p | g follows. Write now ¢ = 2*M with a > 1 and odd M € Z divisible by
3 and choose z € Z satisfying

=0 (mod2'*®), z=1 (mod M).
Then f(z) =0 (mod 6) and f(0) = 1 (mod 6), however z = 0 (mod 2'*%)

implies g(z) = g(0) (mod 2'*%), hence with a suitable A € Z we may write
g(z) — g(0) = A2'** and finally the number

fla) - £(0) = ==

turns out to be even, contradicting f(z) — f(0) =5 (mod 6).
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5. We shall see later (see the Corollary to Theorem 1.7) that for composite
m, which are not prime powers, the ring Z/mZ does not have any representation
pair. The problem of determination of all commutative rings which have a
representation ring seems to be open (PROBLEM I). We shall present now
a necessary condition given by L.REDEI, T.SZELE [47], but first we have to
recall certain elementary properties of difference operators:

If R is an arbitrary commutative ring and f : Z — R an arbitrary map,
then we put

Alf(z) = f(z+1) - f(2),

and

A™f(z) = A" f(x+ 1) — A" f(z) forn=0,1,... .
LEMMA 1.6. (i) Forany f : Z — R, forn =1,2,... and for all * € Z one has

= (1
af(e) = 11 () e ).
(i1) If f € R[X], r € R and we put forz € Z
gr(z) = f(zr),
then for a suitable positive integer N we have
AVg,(z) =0
forallz € Z.

PROOF: The assertion (i) is obtained by a simple recurrence argument and to
prove (ii) it suffices to observe that g.(z) is a polynomial in z. O

COROLLARY. Let R be a ring having a representation ring and let < Si,S2 >
be a representation pair for R. For every map F : R — R and every non-zero
r € R there exists a positive integer N such that the N-th iterate §" of the
operator §,, defined by

6, F(z)= F(z+7r)— F(2)
vanishes identically.

PROOF: Let ¢ : S; — R be a surjective homomorphism, realizing the repre-
sentation of R by the pair < 51,52 > and let r = ¢(s) for some s € S5;. It
suffices now to apply part (ii) of the lemma to the polynomial inducing F. O

THEOREM 1.7. (L.REDE1, T.SzELE [47], part II, Satz 5) Let R be a commu-
tative ring with unit element e and assume that R has a representation ring.
Then there exists a prime power q such that qe = 0.

PrROOF: Let < S5;,S52 > be a representation pair for R.

First assume that R contains an element s of infinite additive order, i.e.
all elements s, 2s,3s,... are distinct and non-zero, and let f : R — R satisfy
f(s) = s and f(ks) = 0 for k € Z. It suffices now to apply the Corollary
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to Lemma 1.6, since it is obvious that none of the iterated differences of the
sequence s,0,0,.... can vanish.

We may thus assume that all elements of R have a finite additive order.
Assume also that there is a non-zero element s € R whose order m is not a
prime power. Let p be a prime divisor of m and define k by ¢ = p* || m.
Consider any map f : R — R satisfying f(is) = e for i = p* (mod m) and
f(is) = 0 for all other i € Z. By the Corollary to Lemma 1.6 the N-th differences
8" f vanish for all sufficiently large N and hence we may find such an N which
is a power of p, say N = p*. We may assume that u exceeds k and moreover the

congruence
m

U=k =1 (mod ;,T)

p =
holds. (Simply choose sufficiently large u satisfying u = k (mod ¢(m/p*))).
The last congruence implies

(1.2) p* =p* (mod m)

and if we put f(z) = f(rz) then with the use of Lemma 1.6 (i) we get
k

fww—(ﬂ)ﬂw—w)+~ww—n“ﬂm=o

and the congruence

f(p*) = f(0) (mod pR)
follows. (Note that our assumption about m implies that pR is not the zero
ideal). Finally note that since the function f is periodic of period m, the con-
gruence (1.2) leads to

0=£(0)= f(p*) = f(»*) (mod pR),
a contradiction.

It follows that the additive order of every non-zero element of R must be a
prime-power, and this applies in particular to the unit element. O

COROLLARY. The ring Z/mZ has a representation ring if and only if m Is a
prime power.

PROOF: The necessity follows from the last theorem and the sufficiency is con-
tained in Theorem 1.4. O

6. We conclude this section with two results dealing with P(R) in the case
R = Z/qZ and start with a theorem of L.CARLITZ [64]:

THEOREM 1.8. Let q = p" be a prime power, let f : Z/qZ — Z/qZ be a given
map, let A, ={0,1,2,...,¢— 1} and denote by f : A; — A, the map induced
by f. Then f is a restriction to Ag of a polynomial F € Z[X] if and only if

AT £(0) is divisible by (g,r!) forr=0,1,...,¢ — 1.

PROOF: Necessity. In view of Lemma 1.6 (i) it suffices to establish the following
lemma:
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LEMMA 1.9. If F € Z[X] then the numbers
- r—i (T .
> (5) F
i=0 ]
are for all r > 0 divisible by r!.
PROOF: Observe first that if we define for j = 0,1, ... the polynomials F; by
Fi(X)=X(X-1)---(X=-j+1),

then every polynomial of Z[X] can be uniquely written as a linear combination of
the F;’s with rational integral coeffficients. A simple inductive argument shows
that for » = 1,2,... one has

ATFi(X)=3(G-1) (G —r+ )F_(X),

and since the product of r consecutive integers is divisible by r! the assertion
follows for the polynomials F; and by linearity the lemma results. O

Sufficiency. We need a simple lemma:
LEMMA 1.10. Ifh is any function defined on the set A, then for for all a € A,
one has .
< a
h(a) = AU)(O)( )

ProOF: Using Lemma 1.6 (i) and the equality

()G = ()G

we get
o) =gy ()C)
=i0 (‘f)h(i) j=0<-1>f ( - )

a—1

Since for t > a — ¢ we have ( ) = 0, the last expression equals

i (?)"(i) g(—l)‘ct_ i) = i ((;)h(i)(l — 1)~ = h(a). O

i=0 i=0

~

Observe now that the denominator of the fraction Ajf(O)/j! n its reduced
form is for j < ¢ not divisible by p and so we may find 0 < &; < ¢ satisfying

A f(0) = &' (mod gq).
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Applying the last lemma to h = f we obtain that the polynomial

q9
F(X)=) X(X -1 (X=j+1)
j=0

realizes f. O

It has been shown by F.DUEBALL [49] that if p is a prime and n > 1
then every polynomial in Z/(p"Z)[X] is uniquely determined by its values at
z=0,1,...,tp — 1, where t is defined as follows: if p% || p/j! for j = 0,1,...,
then c is the smallest index satisfying ¢; > n. This is closely related to the
polynomial interpolation problem. A necessary and sufficient condition for its
solvability in an arbitrary commutative ring has been given by R.SPIrRA [68].

A characterization of functions f : (Z/p"Z)* — Z/p"Z which can be
represented by k-ary polynomials has been given by I.G.ROSENBERG [75].

7. The number of of elements of P(Z/qZ) for any integer q has been found
by A.J.KEMPNER [21]. We give a proof due to J.WIESENBAUER [82]. (An-
other proofs had been given by G.KELLER, F.R.OLsoN [68] and G.MULLEN,
H.STEVENs [84]. Cf. also J.V.BRAWLEY, G.L.MULLEN [92], who considered
the more general case of polynomial functions in a Galois ring Z[X]/I with
I = pZ[X]+ fZ[X], where pis a prime and f € Z[X] is a polynomial irreducible
mod p. For the theory of Galois rings see [MD]. The number of elements in
P(R) in the case when R is a finite commutative local principal ideal ring has
been determined by A.A.NECAEvV [80]).

THEOREM 1.11. Let n > 1 be an integer and denote by M(n) the cardinality

of P(Z/nZ). Then
N

n
M(n) = I}) Tk
where N = N, denotes the largest integer such that n does not divide N!.
Moreover M (n) is a multiplicative function, i.e. (ny,n2) = 1 implies M (nyn3) =
M(n1)M(n2).
In particular, if n = p* is a prime power, then M(n) = p
is the exponent of the prime p in the canonical factorization of H;sz jl.

k(N+1)=s where s

PROOF: It has been noted in the proof of Lemma 1.9 that every polynomial f
of degree not exceeding r over Z can be written uniquely in the form

F(X)=)_a;F;(X),
7=0

with F;(X) = X(X —1)--- (X —j+1). Restricting the coefficients by 0 < a; < n
we get a general form of a polynomial over Z/nZ. Observe now that f has all
its values divisible by n if and only if for i = 0,1,...,r one has

(mod n).

a4 = —
T (n, i)
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In fact, if this condition is satisfied, then we get
X 2! X

; = a;1! =n = ,

a; f(X) = a;i (1) n(n,i!)(i) 0 (mod n)

and if f vanishes identically mod n, then evidently ag = f(0) is divisible by n
and if for k = 0,1,...,7 — 1 we have ax = n/(n,k!) (mod n), then

,
0=f(i)= Zajfj(i = a;j! (mod n),
j=0
implying our assertion. It follows that for every j the ideal I; occuring in the-
orem 1.2 is generated by n/(n,j!) and thus the first assertion follows from that

theorem. Multiplicativity of M(n) is an immediate consequence of the Chinese
Remainder Theorem and the last assertion is just a special case of the first. O

Exercises

1. ( I.LN1veN,LEROY J.WARREN [57] ) Let m be a positive integer and
R = Z/mZ. Prove that I is a finitely generated ideal in R[.X] which is principal
if and only if m is a prime.

2. Let R be a domain and let A be a finite subset of R. Prove that every
map A — R can be realized by a polynomial in R[X] if and only if every
non-zero difference of elements of A is invertible.

3. Prove the analogue of Theorem 1.3 for functions of several variables.

4. (G.MuLLEN, H.STEVENs [84]) Prove the analogue of Theorem 1.11
for polynomials in several variables.

5. Let f € Z[X] and let N be a positive integer. One says that f is a
permutation polynomial mod N, if it induces a permutation of Z/NZ.

(i) Show that if p is a prime then f € Z[X] is a permutation polynomial
mod p? if and only if it is a permutation polynomial mod p and for all
z € Z one has

f'()#£0 (mod p).

(i1) Show that if p is a prime and f is a permutation polynomial mod p?, then
it also a permutation polynomial mod p™ for n = 3,4, ... .

(iii) Prove that f is a permutation polynomial mod N if and only if it is a
permutation polynomial mod ¢ for all prime powers ¢ dividing N.

6. (G.MULLEN, H.STEVENS [84]) Let p be a prime and n > 2. Prove
that the number of polynomial functions which permute the elements of Z/p"Z
equals

pl(p—1)7p°,
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where

D= (N+1)(n—c(N))+d(N)-2p,
(with N being the largest integer with ¢(N) < n, where ¢(N) is the exponent of
p in the factorization of n!) and

=15 2] (31)

r=1

7. (L.CARrLITZ [63]) Prove that if a polynomial f € F,[X] induces a
permutation in all fields F,« (k = 1,2,...) then with suitable a,b € Fp, a # 0

and r > 1 one has )
f(X)=aXP +b.



