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Introduction

Asymptotic analysis, which started as a mathematical tool for the treat-
ment of special problems in mathematical physics affected by the presence of
characteristic small or large parameters, has been rapidly developing during
the last decennia, acquiring more and more global features and penetrating
into different fields of mathematics and applied sciences.

Although, originally, asymptotic analysis had a rather heuristic character,
it was realized that, in order to guarantee the validity of formal asymptotic ex-
pansions, rigorous mathematical theories (especially uniform error estimates)
were needed to ensure further development and the applicability of existing for-
mal techniques. The latter stimulated a vigorous growth of asymptotic analysis
as an integral part of pure and applied mathematics.

Singular perturbations being one of the central topics in the asymptotic
analysis, they play also a special role as an adequate mathematical tool for de-
scribing several important physical phenomena, such as propagation of waves
in media in the presence of small energy dissipations or dispersions, appearance
of boundary or interior layers in fluid and gas dynamics, as well as in the elas-
ticity theory, semi-classical asymptotic approximations in quantum mechanics,
phenomena in the semi-conductor devices theory and so on.

Elliptic and, more generally, coercive singular perturbations are of special
interest for the asymptotic solution of problems, which are characterized by
the boundary layer phenomena, as, for instance in the theory of thin buckling
plates, elastic rods and beams.

A perturbation is said to be singular since its structure and the nature of
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the phenomena which it describes is completely different from the ones which
are proper to the corresponding reduced problem. For instance, considering
a gas flow around an obstacle in fluid dynamics in the situation when the di-
mensionless viscosity parameter (the inverse of the Reynolds number) is small,
one has a mathematical model (the Navier-Stokes equations) which reflects the
physical boundary layer phenomenon in a neighborhood of the obstacle, while
setting the viscosity equal to zero one gets a different mathematical model (the

Euler-Lagrange equations), in which this phenomenon is completely lost.

Considering a stochastic model which is a superposition of a deterministic
process and of a “white noise” of a small level (described as a Wiener pro-
cess with a small variance), one comes to the Kolmogorov-Chapman parabolic
equation with a small diffusion term for the density of the stochastic process
in question; it is a singular perturbation of the reduced hyperbolic equation,

which describes the deterministic situation.

Other examples come from the theory of elastic rods or beams. If an elastic
beam at rest is subjected to a strong pulling out longitudinal force described
by a large dimensionless parameter, then using this parameter and setting it
equal to infinity, one can simplify the mathematicalvmodel, getting a reduced
differential equation, which only partially refects the physical phenomenon.
Indeed, for instance, in the case when the beam at rest is simply supported
by its end points, the natural boundary conditions would tell that at the end
points the displacements and the momenta of the forces applied must be zero.
However for the reduced equation (which is of the second order) it is possible
to have only the displacements vanishing, while the momenta of the forces at
the end points (not necessarily zero) are determined a posteriori. In fact, a
boundary layer phenomenon in a neighborhood of the end points of the beam

is present in this situation and should not be neglected.

The linear singular perturbation theory and its possible applications is
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the topic of this volume. Let A% be such a perturbation which is usually a
differential (or integro-differential) operator affected by the presence of a small

parameter € € (0,£0). One is interested in solving the equation
(1) AEUE :f: 56(0)60),

where f is a given second member..
It is (impicitly or explicitly) assumed that the reduced equation (defined

in a natural way and usually much simpler than (1)):
(2) AOUO = f;

can be uniquely solved.

Then one is interested in getting a convergent series

(3) Ue = Z ekuy

E>0

for the solution u, of (1), and that is usually not possible, since, as a conse-
quence of a singular nature of the perturbation A%, the solutions of (1) do not
depend analytically on € even in the case when A® is a real analytic function
of € € [—¢€y, €9] valued in some operator space.

Giving up the convergence, one asks for an asymptotic convergence of the
series on the right hand side of (3), i.e. for each integer N > 0 one would like

to have in a certain sense:

(4) u, — Z skukzO(eN), as € — 0.
0<k<N
Usually, formal asymptotic expansion techniques allow to produce a rela-
tively simple algorithm for computing recursively the coefficients uy, k > 0, in
the asymptotic expansion (3) or, even for more complicated forms of such an

expansion, taking into account, for instance, the boundary layer phenomenon.
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A very important question, which arises afterwards, is a proof of the
asymptotic convergence like (4) (or in a different form, appropriate to the
situation considered). The only reasonable way to ensure the asymptotic con-
vergence of approximate solutions to the solution of (1) is to have uniform a
priori estimates for u., i.e. uniform upper bounds for the norm of the inverse
operator (Af)~! (whose existence is, in fact, a part of the problem) as an

operator from an appropriate data space D, into the solution space H,,
(5) (A)" 1D, = H,, €€(0,¢0).

Such a question is not merely a matter of mathematical rigor, but it is
crucial for the entire “raison d’étre” of the formal techniques which may, even-
tually, allow to determine uniquely ug, £ > 0, even in the situation, when the
solution to (1) does not exist or is not uniquely defined without additional
restrictions.

For being specific, consider several examples.

Example 1. Let ¢(z) (z € R?) be a real valued infinitely differentiable function
and assume that ¢(z) = ¢(oo) for || > 7, » > 0 being sufficiently large.

Consider the following singuiar perturbation:

(6) Afu = u — e2div(g(z)grad u)
and the corresponding equatior

(M Aty = f,

where f is a given infinitely differentiable function with compact support, i.e.
f(z) vanishes outside of some ball in R®, and u.(z) is supposed to vanish at
infinity.

The natural reduced operator A° for A¢ is the identity, so that ug = f, if

ue in (7) admits an asymptotic expansion.
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Furthermore, introducing the differential operator:
(8) B(z,8;) := div(q(z)grad) = V - (¢(z)V),
one can formally write an asymptotic expansion for u, in the form:
9) ue ~ Y eug(z), uak(z) = (B(z,0:))* f(),
E>0
whose right hand side makes sense since f is smooth and has a compact support.
Now the crucial question of an asymptotic convergence of the series on the

right hand side of (9) to u. arises.

Let us make the following basic additional assumption:

(10) xlené'a q(z) = q0 > 0.

Under this assumption (10) (which is an ellipticity condition for the sin-
gular perturbation A%) one can easily show the asymptotic convergence in (9).
Indeed, integrating by part after multiplication of (7) by u., using the
Cauchy-Schwarz inequality and the basic assumption (10), one gets the follow-

ing a prior: estimate

1/2
(11) (llwelZ oy + ¥ IVuelZamsy) < 7@ fllzacms),

where

(12) 7(¢) = max {1, (:Eug q(z)) (,ie“.fa q(t)) _1} < 0.

Introducing the norms of vectorial order s = (s1, 52, s3) € R3,

(13) llulls),e = e (14 I€1%)*2/2(1 + €261%)** | Lacms),

where %(§) = Fy_.¢u is the Fourier transform of u, one can rewrite (11) in the

form:

[lull0,0,1),e < Y(DIIfll(0,0,0),¢-
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Actually,using (13) and estimating more accurately by the Cauchy-Schwarz

inequality, one gets the following sharp a priori estimate:

(14) I[2ellc0,0,1),e < Y(DIIfllc0,0,-1),es Ve >0,

where v(¢) < oo is defined by (12).
Differentiating (7) with respect to £ and using the same argument, one

gets for any integer s3 > 0, s3 > 0 the following estimate:

(15) H“tn(h,u.sa),e < C(51’32133:50’q)”f“(sx,h.sa—Z).e: Ve € (0, €0),

where the constant C(sy, s, 53, €0, ¢) may only depend on sy, s3, s3, €0, 7(¢q) and
some derivatives of ¢(z).

An estimate like (15) can be established for any s = (s1, s2,83) € R3.

Using (15) for each given s € R3, one finds:

(16)

e = 3 *uanliye < Ce™fllonrsanonsner YN >0, Ve € (0,0),
0<k<N

where the constant C' > 0 may only depend on N, s,£0,7(g) and some deriva-

tives of ¢(z).

Thus, (16) implies the asymptotic convergence in (9) and one may dif-
ferentiate the asymptotic relation (9) with respect to £ any number of times
without loosing the asymptotic convergence, provided that f € C§°(R3), ie. f
is smooth and has compact support.

Note that (9) is not satisfactory in the sense, that it provides the asymp-
totic approximations to u., which all have their support coinciding with the
support of f. This is not the case for the solution u. of (6), (7) under the
assumptoin (10), the support of u, being the entire R3.

A more appropriate asymptotic formula for the solution u, of (6), (7) under

the assumption (10) is provided by the following argument. First, assume that
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q(z) = ¢ > Ois a constant. Then the solution of (6), (7) is given by the formula:

w@) = (neta) ™" [ f@le=sl™ exp(-lo=ul/(ea'/ )y =
= (L (4 2qeP) ™ Fee (@),

(17)

where F;_.¢ and F, o o are the direct and inverse Fourier transform, respectively.
Now, if ¢(z) is not a constant but still satisfies the conditions hereabove

and, especially, the condition (10), one can still define the function:
s = (meta(@) ™ [ )la—ol™ exp(—la—yl/e(a(e))/*))dy =

= (FEL (14 2q(@)E) ™ Fasef)(2) = (5°)(z).

It turns out that

(18)

(19) Aful® = f —eg,,
where
(20) ”98”(81,82,83—2),5 S C“f”(al,s;,sa—Z),e, Ve € (0150)1

with a constant C' > 0, which does not depend on ¢, g, and f.

In other words, S® being the operator defined by (18) and introducing
the spaces H(,),,_.(Rs) of the functions u whose Fourier transforms are locally
integrable and have the norms (13) finite, Ve € (0,&0), one can rewrite (19),

(20) as follows:

(21) AfS® =1—¢eQ°, I = identity,

where the family of linear mappings Q°,

(22)  Q: Ho0)e(R°) = H(s—y),(R®), »=(0,0,2), €€ (0,e0),

is equicontinuous, i.e. the norm of Q¢ is uniformly bounded with respect to

€ € (0,€0), Veg < 00.
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!
Thus, the norm of eQ® (0 < € < gg) is strictly less than 1, ie. Q¢
(0 < € < €9) is an equicontraction, provided th4t €o > 0 is sufficiently small.
Hence, (21) yields for €9 > 0 sufficiently small:

(23) (A%)7h = S (I-eQ) ™' = 5° ) e (Q),
k>0

the series on the right hand side of (23) being convergent with respect to the
operator norm in £(H(,_,).(R?)) uniformly with respect to ¢ € (0,&0).

One can show that in fact one has also the following asymptotic relation:
S¢A®* =1—-€Qi, €€ (0,¢&0),
where the family of linear mappings:
Q5 : H(,),E(Rs) — H(_,),e(Ra), € € (0,¢0),

is again equicontinuous.

Of course, for the zero approximation u(”) defined by (18) one has:

(24) ”ue - ugo)”(s),e < C€l|f||(a-u),e

and moreover, both u. and u£°) are supported by the entire R3.

Introducing
(25) uND =5 3" F(Q)f, N >0 integer,
0<k<N

one finds:

(26) |[ue — “EN_I)”(J),: < CE‘N”fH(_,_,,),E, Ve(0,¢€0),

where the constant C > 0 does not depend on ¢, u, and f.
The basic difference between (16) and (26) is the fact, that the norm of f on
the right-hand side of (26) is the same, i.e. uN Y defined by (25) converges
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at order O(e™) to u, in Hy (R3), Vf € H(,_,)(R®), thus, also for non-smooth
second members f, while in (16) the larger is N > 0 the smoother the second
member must be in order to have the asymptotic convergence of order O(e").

Now, let us turn to the situation when g(z) does not satisfy condition
(10), for instance, let us consider the case of ¢(x) = —1. Note that the formal

asymptotic expansion (9) in this case takes the form:

(27) ue ~ Y _(—1)Fe?* Ak,

E>0

where A is the Laplace operator, A = ) 6]-2, 0; = 0/0x;.

However, equation (7), which ir this case takes the form:
(28) (14 2A)uc(z) = f(z), z€R?

does not have a unique vanishing at infinity solution for f € C§°(R3).
One can consider two different classes of solutions satisfying at infinity the

so-called Sommerfeld radiation conditions:
(29)  uE(z)=0(""), (ied, £ )uF(z) = O(r~?), as |z|=r— oo,

where 8, = 8/0r is the derivative with respect to r = |z|.

Each solution uZ is given by the formulae:
60 e =) [ f@le-yl exp(ilz—yl/e)dy

Thus, the right hand side of (27) does not converge asymptotically, since
it does not ‘know’ to which solution u} or u it should converge.

In fact, different methods are needed, in order to get convergent asymptotic
approximations for the solutions u of (6), (7) when g(z) < g0 < 0, Vz € R?,
of course, u(z) being defined as solutions of (6), (7) satisfying the respective

Sommerfeld radiation conditions (29).
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Example 2. One of the efficient methods for solving approximately differential
(and pseudodifferential) equations is the use of their finite difference approxi-
mations, which are, of course, perturbations of the approximated operators, the
small parameter being the mesh-size of the uniform grid where the discretized
difference equations are considered.

Let us have a look at the boundary value problem:

{ —u(z) = f(z), zeU=(0,1)
u(z’) = ('), z' € U = {0,1},

(31)

where 0, = d/dz, f is a given smooth function of z € U and ¢(z'), z’ € U,
are given real or complex numbers.

Since the solution u(z) of (31) is a smooth function of z € U, too, one
is templed to use a higher order approximation of (31) on the grid Uy =
{z=kh, k=0,1,...,N} with integer N = h=1 > 0.

For instance, the following finite difference approximation of —92 has the

accuracy O(h*) on smooth functions:
(32) a(h, 0z, 05 p) = =0z 00z p + (h*/12)(02,10; 1),

where 0;, 5 and 6;’,, are the forward and backward finite difference derivatives,

respectively, i.e.
(33) (Benu)(2) = b~ (u(z+h) — u(@)), (3 pu)(z) = A~ (u(z) — u(z—h).

Indeed, a straightforward computation shows that for any smooth function

u(z), z € U, one has:
(a(h, Oz,h,07 1) + ) u(z) = O(h*), as h—0.

One is tempted to use (32) for solving numerically (31).
However, one can not use (32) for all points on the grid U but only for

the points zx = kh with 1 < k < N. Of course at the points zg =0 and zy =1
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one can use the boundary condition in (31). Still one extra boundary condition,
say at the points z; = h and zy_1 = 1—h, is missing and one has to find this
boundary condition in an appropriate way, since otherwise a discrete version
of a boundary layer behavior in a neighborhood of the boundary oU = {0,1}

will appear, i.e. solutions of the homogeneous equation
a(h,0z,n, 0z ) vn(z) = 0

of the form Cyq~*/P4+C_q=(1=2)/* with ¢ = (7+/48) will emerge with non-
negligible coefficients Cy.

Thus, the approximation (32) along with appropriate boundary conditions
is a singular perturbation of (31), h being the corresponding small parameter.

Some perturbations by finite differences might destroy the basic structure
and make disappear the fundamental properties of the operators which are
being approximated. For instance, the basic property of the differentiation
operator 0; = d/dz (z € R) is the fact that all the solutions of the homogeneous
equation Gyu(z) = 0 are smooth (in fact, constants). This property of 9, is
preserved on the grid R, = hZ = {z=kh, k € Z} by both the forward 9, »
and the backward 97 ), finite difference approximations of 0r. However, the
centered finite difference derivative 9, n = (1/2)(8z,5 + 5 ) does not enjoy
such a property anymore, since, besides the constants, also the non-smooth
meshfunction (—1)*/* is a solution of the homogeneous equation 9, pu(z) =
0 on the grid Ry. The centered finite difference derivative is a non-elliptic
approximation of 0.

For the Hilbert transform

(Hu)@) = (xi) v [ )z =)y
the approximation

(Hau)(z) == (mi)"'h > f(y)(a—y)™', z€Ry

yER\{z}
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is non-elliptic (Hy is no longer invertible in I5(Rj)), while the approximation:
(Hpu)(z) := (m8)"th Z f(W)(z—y)~'(1 = cos(mh~ (z—y)), z €Ry
veR,\{z}

preserves on the grid Ry all the fundamental properties of the Hilbert transform.

Example 3. Finite difference approximations of the heat equation provide a
wealth of interesting situations from the point of view of singular perturbations.

Let us consider the Cauchy problem:
{ (0 — AYu(a,t) = f(z,8), z€R, 130,
u(z,0) = p(2)

where ¢(z), f(z,t) are given smooth functions with compact support.

(34)

Using the backward finite difference discretization as an approximation of
8; = 8/0t on the grid R} = {t=kr, k>0}, one gets for the corresponding
approximation u,(z,t), t € R} of u(z,t) the following singularly perturbed

recursion equations (implicit finite difference scheme):

(1-7A)u,(z,t) = 7f(z,t) + ur(z,t—7), t€R}
w

ur(z,0) = ¢(z).

For finding u,(z,t) on each step of the recursion one has to invert the singular
perturbation (1 —&2A), 7 = €2, which is precisely of the elliptic type discussed
hereabove.

| One might be tempted to use the centered finite difference 5” for ap-
proximating 0; since the accuracy in this case is O(r?). This is the so-called
Richardson’s scheme. However, 6},, being a non-elliptic approximation of G,
one should not expect to have a finite difference scheme, reflecting the basic
properties of the heat operator. First, there is a problem of imposing (or not)
an extra initial condition, since the Richardson’s approximation is a three-step
finite difference scheme. An easy Fourier analysis shows that actually one has

to consider the corresponding discretized problem in this case on R} x R? not as
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an initial, but as a boundary value problem with just one boundary condition
at ¢ = 0 and another one either at ¢ = oo (the solution vanishes as ¢ — +00)
orat t =T < 0o. In both cases the smooth part of the solution will be ‘pol-
luted’ by the non-smooth part generated by the solutions of the homogeneous

equation having the form:
vr(z,t) = (=1)T=7 (14+7242)Y2 — rA) Ty (2) =
—t)/1 - —(T-t)/7 ;-
= ()T (R, (472K + rle?) ™ s (210),

for any finite ' > 0, the oscillatory non-smooth factor (—1)(T=9/7 being always
present.

A good scheme having the accuracy O(7?) is the following one:
(B + ((1/2)A% = A) Oy 1 )ur(z,t) = (14 (7/2)(0: — A)) f(a, ),
19 {u(m,O) = p(z), zeR" te ﬁ: =7l,,
where Z is the set of all non-negative integers and ©; , is the shift operator
on ﬁ:, ie. (O ,v)(t) = v(t+7).
Note that the corresponding singular perturbation to be inverted on each
step of solving the implicit finite difference problem (36), is again an elliptic

singular perturbation having the form:
(37) A® =1-e2A+(1/2)e*'A%, e?=r1, z€R".

Of course, hereabove one may use the usual finite difference approximation Ay
of the Laplacian on the grid R} = hZ"™:
(38) Ap = Z 0z, 10z, s

1<k<n
thus getting (by using the schemes hereabove) unconditionally stable time-
space finite difference approximations of the heat equation with one condition
at t = 0 (also for the Richardson’s scheme), i.e. the approximations here-
above with A replaced by Aj given by (38), are stable (in the sense of non-

accumulation of the errors), whatever the mesh-sizes 7 and h are.



