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PREFACE

This volume of lecture notes contains results on global univalent mappings.
Some of the material of this volume had been given as seminar talks at the
Devartment of Mathematics, Wniversity of Kansas, Lawrence during 1978-79 and at
the Indian Statistical Institute, Delhi Centre during 1979-80.

Even though the classical local inverse function theorem is well-known,

. Gale-Nikaido's global univalent results obtained in (1965) are not known to many
mathematicians that I have sampled. Recently some significant contributions have
been made in this area notably by Carcia-Zangwill (1979), Mas-Colell (1979) and
Scarf-Hirsch-Chilnisky (1980). GClobal univalent results are as imvortant as local
univalent results and as such I thoughtit is worthwhile to make these results
well-known to the mathematical community at large. Also I believe that there are
very many interesting open problems which are worth solving in this branch of
Mathematics. I have also included a number of applications from different
disciplines like Differential Equations, Mathematical Economincs, Mathematical
Programming, Statistics etc. Some of the results have avveared onlv in Journals
and we are bringing them to-gether in one place.

These notes contain some new results. For examole Provnosition 2, Theorem 4
in Chapter II, Theorem 4, Theorem 5 in Chapter III, Theorem 2" in Chapter V,
Theorem 8 in Chapter VI, Theorem 2 in Chapter VII, Theorem 9 in Chanter VIII are
new results.

It is next to impossible to cover all the known results on global univalent
mappings for lack of space and time. For example a notable omission could be the
role playved by univalent mappings whose domain is complex numbers. We have also
not done enough justice to the vroblem when a PL-function will be a homeomorphism
in view of the growing importance of such functions. We have certainly given
references where an interested reader can get more information.

I am grateful to Professors : Andreu Mas-Colell, Ruben Schramm, Albrecht Dold

and an anonymous referee for their several constructive suggestions on various parts



v

of this material. I am also grateful to Professor David Gale for the example given
at the end of Chapnter II and Professor L. Salvadori for some useful discussion that
I had with him regarding Chapter VII.

Moreover I wish to thank the Indian Statistical Institute, Delhi Centre for
providing the facilities and the atmosphere necessarv and conducive for such work.
Finally I exoress myv sincere thanks to Mr. V.P. Sharma for his excellent and
painstaking work in tyning several revisions of the manuscriot, Mr. Mehar Lal who
typed a preliminary version of this manuscript and Mr. A.N. Sharma who helned me

in filling many symbols.

T. PARTEASARATHY
1 DECEMBER 1982 INDIAN STATISTICAL INSTITUTE
DELFI CENTRE



INTROD UCTION

Let © be a subset of R" and let F be a differentiable function from  to RT.
We are looking for nice conditions that will ensure the equation F(x) = y to have
at most one solution for all y ¢ R". In other words we want the equation F(x) =y

to have a unique solution for every v in the range of F.

Classical inverse function theorem says that if the Jacobian of the map does
not vanish then if F(x) = y has a solution x*, then x* is an isolated solution,
that is, there is a neighbourhood of x* which contains no other solution. In the
global univalence problem, we demand x* to be the only solution throughout Q.

It is a fascinating fact, why the global univalence problem had not been posed
or at any rate solved before Fadamard in 1906, which of course is a very late stage
in the develonment of Analysis. It is funny and actually baffling, how much
misunderstanding associated with the global univalence broblem survived right
into the middle of the twentieth century. A brief history of this may not be out

of place here.

Paul Samuelson in (1949) gave as sufficient condition for uniaueness, that the
Jacobian should not vanish and it was pointed out by A. Turing that this statement
was faulty. Fowever Paul Samuelson's economic intuition was correct and in his
case all the elements of the Jacobian were essentially one-signed and this condition
combined with the non-vanishing determinant, turns out to be sufficient to guarantee

uniqueness in the large.

Paul Samuelson (1953) then stated that non-vanishing of the leadine minors
will suffice for global univalence in general. Rut Nikaido produced a counter
example to this assertion and he went on to show that global univalence nreveils in
any convex region provided the Jacobian matrix is a quasi-positive definite matrix.
Later, Cale proved that it is sufficient for uniqueness in any rectancular region
orovided the Jacobian matrix is a P-matrix, that is, every principal minor is
positive. In fact this culminated in the well-known article of Cale-Nikaido (1965)

which is the main source of inspiration for the present writer.

I should mention two other articles. The article of Banach-Mazur (1934) gives
probably the first proof of a relevant result formulated with the demands of rigour
sti111 valid to-day. The more recent article by Palais (1959) covers a much wider

area than the article of Banach and Mazur.

There are several aporoaches one can consider to the global univalent problem.
For example the approach could be via linear inequalities, monotone functions or
PL functions. Throughout we have followed more or less the approach through linear

inequalities.



VIl

In most of the theorems the conditions for global univalence are very stringent
and therefore often not satisfied in apolications. Another problem is to verify the
conditions of the theorem in practice. In general it is hard to obtain necessary
and sufficient conditions for global univalence results. There is lot of room for
further research in this area. (ale-Nikaido's global univalent theorem is valid
even if the partial derivatives are not continuous whereas Mas-Colell's results as
well as Carcia-Zangwill's results demand the partial derivatives to be continuous.
One of the major open problems in this area is the following: Can continuity of
the derivatives in Mas-Colell's results be disvensed with (altosether or at least
in part) or alternatively - are there counter examples? Another problem is the
following: Is the fundamental global univalent result due to Cale-Nikaido valid in

any compact convex region?

As already pointed out in some of the applications complete univalence is not
warranted but in which some weaker univalence enunciations can nevertheless be made.
In this connection I would like to cite at least two important papers one by Chua

and Lam and the other by Schramm.

Because of the lack of a text on the global univalence and since the results
are available only in articles scattered in various journals or in texts devoted
to other subjects (for example Economics), I felt the need for writing this notes
on global univalent mappings. In the next ten chapters with the exception of the
first two chapters, various results on global univalent mappings as well as their
applications are discussed. Also many examples are given and several open problems

are mentioned which I believe will interest research workers.

Prerequisites needed for reading this monograph are real analysis and matrix
theory. Fere are a few suggestions.
[1]. W.Rudin (1976), Principles of Mathematical Analysis, Third Edition
(International Student Edition) McGraw-Hill, Koyakusha Ltd.
[2]. F.R.Gantmacher (1959), The Theory of Matrices Vols. I and II, Chelsea Publishing
Comnany, New York.

[3]. C.R. Rao (1974), Linear Statistical Inference and its Applications, Second
Edition, Wiley Eastern Private Limited, New Delhi (Especially Chapter I dealing
with 'Algebra of vectors and matrices!').

[4]. G.S. Rogers (1980), Matrix derivatives, Marcel Dekker, New York and Basel
(Actuallv only chaoters 13 and 14 have the Jacobian and its nroverties as their
central topic while 11 and 12 refer to the general theory).

[5]. W.Fleming (1977), Functions of several variables, Second Edition, Springer-
Verlag, Heidelberg-New York.

Some knowledge of algebraic_tovology will be useful (especially degree theory)

and we have mentioned a few references in Chapter IV.
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CHAPTER I

PRELIMINARIES AND STATEMENT OF THE PROBLEM

Abstract : In this chapter we will collect some well-known results like classical
inverse function theorem, domain invariance theorem etc for ready reference (without
proof). We will then give the statement of the problem considered in this monograph

cite a few results and make some remarks.

Classical inverse function theorem : Let F be a transformation from an open set

0 c’R® to R". We will say that F is locally univalent, if for every x € Q there
exists a neighbourhood UX of x such that F]Ux (=F restricted to Ux) is one-one.
Inverse function theorem gives a set of sufficient conditions for F to be locally
univalent. We come across such problems in various situations. For example, suppose
for a given y, there exists an X such that F(xo) = y. We may like to know whether
there are points x other than X, contained in a small neighbourhood around X,
satisfying F(x) = y. Classical inverse function theorem asserts that the solution

is unique locally. In order to state the inverse function theorem we need the

following.

Definition : A transformation F is differentiable at to if there exists a linear

transformation L (depending on to) such that

. 1
lim [F(t +h)-F(t )-L(h)] = 0 .
h> 0 h o o
Here ||h|| stands for the usual vector norm. The linear transformation L is called
the differential of F at to and is often denoted by DF(tO). Write F = (fl,f2,...,fn)
where each fi is a real-valued function from §2. We denote their partial derivatives
. of.
J - _1
a8 13 =%, °
J
Remark 1 : A transformation F is differentiable at to if and only if each of its
components fi is differentiable at to for i =1,2,...,n.
Remark 2 : If F is differentiable at to’ then the matrix of the linear transformation

L is simply the Jacobian matrix J of partial derivatives fi(to).

Definition : Call F a transformation of class q, q > 0 if each fi is of class

C(q). That is, for every fi(i =1,2,...,n) all the partial derivatives upto order

q exist and are continuous over its domain.



We are now ready to state the (local) inverse function theorem.

(q)

set Q CR™ into R". If the Jacobian at to € O does not vanish, then there exists

Local inverse function theorem : Let F be a map of class C'*’, q > 1 from an open

an open set Aoc: 2 containing to such that :
(i) F[Ao is one-one, that is, F restricted to Ao is univalent.

(1) F(a)) is an open set.

(q)

(iii) The inverse G of F]Ao is of class C /.

(iv) JG(x) £ (JF(t))_1 where F(t) = x, t € A,. Here JG(X) denotes the Jacobian
matrix evaluated at x. Proof of this may be found in Fleming [17].

Remark 1 : In one dimension the situation is simpler. If F is a real-valued
function with domain an open interval Q, then F_l (=inverse map of F) exists if F is

strictly monotone. Also F will be strictly monotone if F'(t) # 0 for all t e Q,

and in fact G'(x) = fT%ET where x = F(t). In higher dimensions the Jacobian

JF(t) takes the place of F'(t). The situation here is more complicated. For
example, the non-vanishing of the Jacobian does not guarantee that F has a (global)
inverse as in the univariate case. However, if JF(tO) does not vanish at to, we

can find a small neighbourhood AO containing to such that F restricted to AO will
have an inverse. In other words we can only assert local inverse. This is precisely

part of the statement of inverse function theorem.

If one is interested in just the local univalence we have the following theorem

(proof may be found in [L44]).

Local univalent theorem : Let F:0C R" > R” be a mapping where Q is an open

connected subset of R". We have the following:
(i) If F is differentiable at a point t, € 0 and JF(to) # 0, then there is a
neighbourhood U of to such that F(y) = F(to), yeU=y=t,.

(ii) If F is continuously differentiable in a neighbourhood of an interior point
t, of 2 and JF(tO) # 0, then there is a neighbourhood U of to where F is univalent,
that is, F(y) = F(z), y,z2 e U =y = z.

We are now ready to state the following:

Theorem on invariance of interior points : Let F:0 - R" be a differentiable map

with non-vanishing Jacobian, where @ is an open region in R". Then the image set
F(Q) is also an open region.

For a proof see Nikaido [U44]. This result is true not only for differentiable

mappings with nonvanishing Jacobians but also for homeomorphic mappings from a



region of r" into R". That is the content of the following classical theorem due

to Brouwer.

Invariance of domain theorem:If @ is open in R" and F:Q > R" is one-one and

continuous, then F(Q) is open and F is a homeomorphism. For a proof see [30].

Definition : A mapping F:Q - R" is called a local homeomorphism if for each t € Q,

a neighbourhood of t is mapped homeomorphically by F onto a neighbourhood of F(t).

It is clear that if F:Q ~ R" is a continuously differentiable function with
non-vanishing Jacobian it follows from local inverse-function theorem or local
univalent theorem that F is a local homeomorphism. We will introduce one more

definition.

Definition : Let F:0 » R" be a continuous mapping where 2 is an open region in R"
with the property that each y e F(Q) has a neighbourhood V such that each component
of F_l(V) is mapped homeomorphically onto V by F. Then F is called a covering

map and (Q,F) is called a covering space for F(Q). In this case, the cardinal number
n of the set F(

F is called a finite covering, or more specifically, an n-covering.

y) is the same for all y € F(Q). If n is a finite integer, then

Remarks : It is well-known that every covering map F:0 - R" is a homeomorphism if
(2 is connected and that every homeomorphic onto function F:Q - R" is a covering map
and every covering map is a local homeomorphism. However the converse is not true.
A local homeomorphism need not be a covering map and a covering map need not be a
homeomorphic onto function. A l-covering map is necessarily a homeomorphic onto

function. The following result is well-known [48].

A theorem on covering space : Let X and Y be connected, locally pathwise connected

spaces (for example X =Y = Rn). Furthermore suppose Y is simply connected. Then
F is a homeomorphism of X onto Y if and only if (X,F) is a covering space of Y.

[ Here F:X - Y is a map from X to Y].

We need this result especially in chapter IV where sufficient conditions are
given in order that a map F from R" to R will be a homeomorphism onto R". For
results on degree theory, we freely use from chapter VI in [ 48]. Other good

references for degree theory are [13,59,63].

Statement of the problem : Let F:Q C R" > R" be a differentiable map. We want

F to be globally one-one throughout Q. What conditions should we impose on the

map F and the region { so that F is globally one-one ?

Remark 1 : Non-vanishing of the Jacobians alone will not suffice except in the

univariate case. See the example of Gale and Nikaido given in chapter III.



Remark 2 : Even in R1 non-vanishing of the derivative is not a necessary condition

3 is globally univalent throughout Rl

for global univalence. For example f(x) = x
whereas its derivative vanishes at x = 0. In general it appears difficult or
hopeless to derive necessary conditions whenever global univalence prevails.

We will cite now a few tvpical results to give the reader some idea about this
monograph.

Fundamental global univalence theorem : (Gale-Nikaido-Inada) : Let F:Q C R® > g2

be a differentiable mapping where Q is a rectangular region in R". Then F is

globally univalent in O if either one of the following conditions holds good.
(a) J(x) (= Jacobian of F at x) is a P-matrix for every x e Q.

(b) J(x) is an N-matrix and the partial derivatives are continuous for all x ¢ Q.

A global univalent theorem in R3 [ Parthasarathy ] : Let F be a differentiable map
3

from a rectangular region 2 € R~ to R3 with its Jacobian J having the following two

properties for every x € Q:

(a) diagonal entries are negative and off-diagonal entries are positive.
(b) Every principal minor of order 2 x 2 is negative.

Then F is univalent in Q.

Plastock's theorem : Let F:R® + R" be a continuously differentiable map.

Suppose J does not vanish at any x € R®. If

[e2]

[ e (/|I@YDat = e

o |x||=t
then F is a homeomorphism of R® onto R". In fact F is a diffeomorphism.
(Here ||x|| stands for the usual Euclidean distant norm and ||A|| = sup||Au|| for
A an n x n matrix and u an n vector with norm one).

In order to state McAuley's theorem we need the following definition.

Definition : Call a continuous mapping F:0 + R" light if F_l(F(x)) is totally
disconnected for each x £ Q. [ Here we will assume 2 to be a unit ball]. Call F
open if for each U open in Q, F(U) is open relative to F(Q). Denote by Sp the

set of points x € Q such that F is not locally one-one at x.

McAuley's Theorem : Suppose that F is a light open mapping of a unit ball @ in
B® onto another unit ball B in B such that (1) F'L F(30) = a0 (2) F(30) = 9B

(3) F|SF is one-one (4) for each component C of B—SF there is a nonempty V in

C open relative to B such that FIF—I(V) is one-one. Then F is a homeomorphism.

Scarf's conjecture : Let F:Q C " > R" be continuously differentiable on a compact




rectangle Q with det J(x) > 0 for every x € Q. Further suppose J(x) is a P-matrix
for every x € 3Q (= boundary of Q). Then F is one-one throughout Q.

This conjecture was proved by three different set of researchers Garcia-Zangwill,
Mas-Colell and Scarf et al. This result is an significant generalization of

Gale-Nikaido's theorem.

Schramm's theorem : Let Q be an x-simple domain in the (x,y)-plane, £ its boundary.

Let F = (f,g) : O » R2 be a differentiable map, o the minimum and B the maximum of
f on 2. Suppose the Jacobian of F is an NVL matrix for each z € 2 and for each
u e (o,B), Buppose at most two points z € ¢ satisfy f(z) = u. Then F restricted
to §© N\ (A(a) U A(R)) is univalent where A(u) = {z:2z ¢ 0 and f(z) = u}.

Remark 1 : Results obtained so far on global univalence are not complete and we

have mentioned several interesting open problems throughout the monograph. For
example it is not known whether Gale-Nikaido's result holds good in any compact
convex regions. In chapter VIIT and IX we have given various applications of
univalent results in other areas like differential equations, Economics, Mathematical

programming, Algebra etc.

Remark 2 : All the theorems cited above with the exception of McAuley's theorem
depend on the choice of a fixed coordinate system. This is so because we place
conditions on the Jacobian matrix. Though one may argue that this may not be the
most natural approach to the problem under consideration, the prescnt writer feels
that this method yields useful results in many problems that arise in practice.

See Chapter VII and Chapter IX in this connection. Also in some special cases the
matrix conditions turn out to be necessary as well - see for example theorem 1 and
theorem 6 in chapter VIII. Also, the present writer feels that it is not difficult

to check these matrix conditions in a given problem.



CHAPTER II

P-MATRICES AND N-MATRICES

Abstract : In this chapter we will give a geometric characterization of P-matrices.
We will give some properties of N-matrices. These facts we need later to prove
global univalence results due to Gale, Nikaido and Inada. We will also see the
interrelation between P-matrices and positive quasi-definite matrices. Finally we
examine the question whether P-property holds good under multiplication (sum) of two
P-matrices - this kind of result is useful in determining when the composition

F o G (sum, F+G) of two univalent functions is univalent.

Let A be an n x n matrix with entries real numbers. We will not consider
matrices with complex entries. If A is a symmetric matrix then A is positive definite
if the associated quadratic form x'Ax > 0, for any x different from O. Here prime
denotes the transpose of the vector x. It is well known that a symmetric matrix A
is positive definite if and only if every principal minor of A is positive. Suppose
we drop the symmetric assumption from A. In such situations can we prove similar
results? In other words, suppose A has the following property, namely x'Ax > 0
for every x # 0. They can we assert that every principal minor of A is positive?
Another interesting question is to characterize matrices whose principal minors are

positive. Next we will answer these questions.

Characterization of P-matrices : We will start with a few definitions. Let A be a

not necessarily symmetric real n X n matrix.

Definition : Call A a P-matrix if every principal minor of A is positive.
Definition : Call A a positive quasi-definite matrix if x'Ax > 0 for every x # 0.
Definition : Call A an N-matrix if every princival minor of A is negative. Further

N-matrices are divided into two categories:

(i)  An N-matrix is said to be of the first category if A has at least one positive

element.

(ii) An N-matrix is said to be of the second category if every element of A is
non-positive.

Definition : Call A a Leontief-type matrix if the off-diagonal entries are
non-positive.

We will make a few quick remarks.



Remark 1 : Every positive quasi-definite matrix is necessarily a P-matrix (we will

give a proof of this fact after characterizing the class of P-matrices). But the

converse is not necessarily true as the following example shows. Let A = [é i 1.
2

Then (Au,u) = u§+2ulu2+u2 (where u = (ul,ug)) and (Au,u) = 0 whenever U = - u,.
Thus A is a P-matrix but not positive quasi-definite. Also observe that A is a

A+A
2

is a singular matrix.

1
) is a positive definite matrix.

positive quasi-definite matrix if and only if (

A+AT
2y =01 )

In this example (

Remark 2 : The following example shows that every positive quasi-definite matrix
need not be positive definite. Let A = [g s] . Clearly (Au,u) = u§+5ulu2+8u§ >0
for any u # 0. Hence A is positive quasi-definite but not a positive definite matrix

as A is not symmetric.

Remark 3 : First category N-matrices share some properties in common with P-matrices
as we shall see below. However there is a nice characterization for symmetric second
category N-matrices. In order to do that we need the following definition. Call a

matrix A, merely positive definite if (i) there exists some vector x such that

x'"Ax< 0 and (ii) whenever x'Ax < 0, this will imply Ax < 0 or Ax > 0-in other words
Ax is onesigned. The result then is the following. If A is a symmetric N-matrix of
the second kind then A is merely positive definite. Furthermore A has exactly one
(simple) negative eigenvalue. Proofs of these results may be found in Rao [621.

We are now ready to prove some results on P-matrices.

Theorem 1 : Let A be a P-matrix or an N-matrix of the first category. Then the

system of linear inequalities

Ax < 0 and
x>0
has only the trivial solution x = 0.
Game theoretic interpretation of theorem 1 : Theorem 1 says that the minimax value

of the matrix game A (as well as the minimax value of every principal submatrix C

of A) is positive, provided A is a P-matrix or an N-matrix of the first kind. This
can be seen as follows. Suppose von Neumann value of the matrix game is less than
or equal to zero. (We will assume minimizer chooses rows and maximizer chooses
colums). We have a probability vector y for the minimizer such that y'A < 0 or
A'y < 0 (prime denotes transpose). If A is a P-matrix or an N-matrix so is A'.

Thus we have got a nontrivial non-negative vector y satisfying A'y < 0 which contra-
dicts theorem 1 and consequently value of A must be positive. It is also clear that
value of A' is positive. See [49, 54 ] for details regarding game theory and [61 ]

for results relating game theory and M-matrices. We follow the proof as given in



Nikaido [4%4].

Proof of Theorem 1 : First we will prove when A is a P-matrix. We will use

induction principle. For n = 1, clearly Theorem 1, is true. So assume theorem 1
for n = k, prove that it holds good for n = k+1 (Here n refers to the order of the

square matrix A). Let x > 0. That is,

.+ a

Bl Pt 0%t 1, ke 1515 O

Since ajy > 0, we can increase if necessary x5 such that one of the inequality

becomes an equality. We will assume without loss of generality

R B - B s I 0 s N | 0
Bogy ¥ Bppfp ¥ e F By g Kq ¢ 0
Ben, T e 255t vt Fg 11 20

Using the first equality, one can eliminate x from the other inequalities. The

resulting inequalities can be written as
85 %y

+* *
By, 158t~ ¥ By g Fga £ O

%
et a2,k+l 1 2

|

| |
where ai. =5 X ai. - a
J i1 J

is a P-matrix of order k. Hence by induction hypothesis, x5 = 0¥ i> 2. Substitu-

14 where i,j = 2,3,...,k+1. Plainly the matrix C = (aﬁj)

ting this in the first equality, aj¥ = 0. But aj; > 0 and hence X = 0. This
terminates the proof of theorem 1 when A is a P-matrix.
Now assume A is an N-matrix of first category. Clearly order of an N-matrix
a b
[c d
a<0,d<0, and ad-bc < 0. This means b and c should be of the same sign. Since
1> 0. If Ax <0 then

of first category should be at least 2 x 2 . Suppose A = ] where

A is of first category, b > 0 and ¢ > 0. Consequently AT
A_le =x < 0. But x > 0 by hypothesis, therefore x = 0. This proves the theorem
when n = 2. As before assume the result for n = k where k > 2 and prove it holds
good for n = k+1l. As A has at least one positive element, we can imitate the proof
verbatim given for P-matrices till we get the matrix C = (aij)i,j = 2,3 s wslobls
Observe that det A = aj det C. Since a < 0, det A = ajq det C < 0, it follows
that det C > 0. In fact one can check that C is a P-matrix. Hence it follows from
the first part of the proof X, = 0¥ i>2. Since ajq # O,x1 = 0 from the first

equality. This terminates the proof of theorem 1 for N-matrices of first kind.



Remark 1 : Geometrically, theorem 1 says the following: Any non-trivial non-negative
vector cannot be mapped to a vector in the negative orthant when A is a P-matrix or

an N-matrix of the first kind.

Remark 2 : Theorem 1 is valid for any matrix A which has non-negative inverse - that

is A_1 > 0. Characterization results are available in the literature for such
class of matrices. In particular if A is a Leontief type matrix then A—1 > 0 if and

only if there exists some x > 0 such that Ax > O.

Remark 3 : A result on linear inequalities asserts the following [ See 18, pp. 497.
For any given matrix D not necessarily a square matrix exactly one of the following
alternatives holds. Either the inequalities x'D < 0 has a semipositive solution or
the inequality Dy > O has a non-negative solution.

In view of this result on linear inequalities, conclusion of theorem 1 can be
viewed as follows: For any matrix A, suppose the system Ax < 0, x > 0 has only a
trivial solution. This statement is equivalent to the fact that A has a left
poverse, that is there exist non-negative matrices N,M such that NA = I+M. This
observation is due to Charnes et. al. [ 8]. Another feature of the result on linear
inequalities is the following, which says that von Neumann value of a P-matrix game

is positive.

Theorem 2 : Suppose A is a P-matrix or an N-matrix of first category. Then there

exists a positive vector Yo > 0 such that Ayo > 0.

Proof : From theorem 1, the matrix D = (A,-I) has no semi-positive solution x with
x'D < 0 and consequently from the above remark it follows that Dy = (A,-I)y > 0
for some y > 0. Here y = (yl’y2""’yn’ Ype1? yn+2""’y2n)' Define y_ = (yl,y2,"yn).

Then clearly Ay > z > O where z = (y v .,ygn). This terminates the proof
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of theorem 2.

n
Corollary 1 : Let S = {x:x2>0, Y xi =1}. Let A be a P-matrix or
i=l

or an N-matrix of first category. Then there exists an o > 0 such that Max (Ax).fia
N 1<i<n
for every x ¢ Sn' ——

Proof : From theorem 1, for every x ¢ Sn it follows that Ax has at least one
coordinate strictly positive. Since Max (Ax). is contbinuous in x and Sn is compact,
1<i<n
Min Max (Ax), = Max (Axo)i for some x° ¢ S,- Set a = Max (Axo)i. This o
x e 8, 1<i<n 1<i<n 1<i<n
will satisfy the requirements of the corollary and the proof is complete.
In order to give a characterization theorem for P-matrix, we introduce the

following definition:



