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PREFACE

This is the second of a series of monographs on electron microscopy aimed at users of the equipment. They
are written both as texts and sources of reference emphasising the applications of electron microscopy to
the characterisation of materials.

In some places the author has referred the reader to material appearing in other monographs of the series.
The following title has already been published:
1. The Operation and Calibration of the Electron Microscope
and the titles in preparation are:
3. Interpretation of Transmission Electron Micrographs
4. Typical Electron Microscope Investigations
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2. ELECTRON DIFFRACTION IN
THE ELECTRON MICROSCOPE

Electron diffraction patterns are routinely obtained
in the electron microscope and are used to gain
quantitative information on the following.

(1) The identity of phases and their orientation
relationship to the matrix.

(2) Habit planes of precipitates, slip planes in
materials.

(3) Exact crystallographic descriptions of crystal
defects produced by deformation, irradiation, etc.

(4) Order/disorder, spinodal decomposition,
magnetic domains and similar phenomena.

PART I. INTRODUCTION TO

2.1 General Introduction

Electrons may be regarded as particle waves with
wavelength A given by the de Broglie relation
mv = h/A. If the electron is accelerated to a
voltage V_, the relativistically corrected wavelength

1S h
4= vl + eViame)

where h is Planck’s constant, m is the mass of the
electron, e is its charge and c is the velocity of
light. Values of A for different accelerating voltages
obtained from the above equation are tabulated
in appendix 7. At 100kV, the conventional
accelerating voltage for transmission electron
microscopy, the relativistically corrected wave-
lengthis 3.7 x 1073 nm.

In transmission electron microscopy a mono-
chromatic beam of electrons is accelerated through
a thin specimen which is usually a’single crystal
0.1-0.5 um thick. On the exit side of the specimen
several diffracted beams are present in addition
to the transmitted beam, and these are focussed
by the objective lens to form a spot pattern in its
back focal plane in the manner shown in figure
1.10(a). As explained in section 1.5, this diffraction
pattern is magnified by the other lenses to produce
a spot pattern, such as that shown in figure 2.1,
on the viewing screen. In this case the incident
beam direction B is [100] in an aluminium (face-
‘centred cubic, f.c.c)) single-crystal specimen. The
transmitted beam is marked T and the arrangement
of diffracted beams D around the transmitted beam
is characteristic of the four-fold symmetry of the
[100] cube axis of aluminium. Here physical and
mathematical descriptions of the diffraction process
are given, to demonstrate both why diffraction

(2.1)

- The first fpart of this chapter contains those
features of the kinematical diffraction theory
necessary to interpret diffraction patterns obtained
from the electron microscope. The second, third
and fourth parts are devoted to indexing diffraction
patterns and to their use in metallurgical
investigations. In this monograph, all important
stereograms are printed to fit the standard Institute
of Physics S inch stereographic net so that it is
possible to work through examples.

ELECTRON DIFFRACTION

patterns such as that in figure 2.1 occur, and how
they may be interpreted using simple geometrical
concepts.

2.2 A Geometrical Approach to Electron
Diffraction from a Crystalline Specimen

When a beam of electrons is incident on the top
surface of a thin crystalline electron microscope
specimen, specific diffracted beams arise at the
bottom exit surface. Although each individual atom
in the crystal scatters the incident beam, the
scattered wavelets will only be in phase (that is
reinforce) in particular crystallographic directions.
Thus diffraction may be discussed in terms of the
phase relationships between the scattered waves

from each atom in the crystal.

2.2.1 Scattering by an Individual Atom

The scattering process at an atom is shown
schematically in figure 2.2. Here a plane wave is
incident on an atom A which acts as a source for a
spherical wave propagating at an angle 26 relative
to the incident wave direction. The efficiency of
the atom in scattering waves is described in terms
oi the atomic scattering factor f, which depends
on both scattering angle § and incident electron
wavelength A. The term f; is defined as

amplitude scattered through angle 20
by the atom

~ amplitude scattered through angle 20
by a single electron

$o

and is given by

me2( A
fo= W(ﬂ) Z - 1) (2.2)
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Figure 2.1 A typical spot pattern {rom an alumin-

wm {f.c.c.) single crystal specimen, incident beam

direction B = [100]. T, transmitted spot; D, dif-
fracted spot

where Z is the atomic number, f, is the atomic
scattering factor for x-rays and the remaining
symbols are those defined previously.

The atomic scattering factor increases with
increasing atomic number and is normally ex-
pressed as a function of (sin 6)/4 (see appendix
8). The general form of the relationship is shown
schematically in figure 2.3.

2.2.2 Scattering by a Crystal

Before considering diffraction by a regular three-
dimensional array of atoms, the principles involved
are discussed by analogy with the diffraction of
monochromatic light by a grating, see figure 2.4.
In this diagram there is a set of slits consisting of
plates that are infinitely long, perpendicular te the
paper and have spacing a. A screen is placed at a
large distance R from the grating and we consider
the situation at a point X. If the waves scattered
from openings 1 and 2 are in phase, that is their
path difference PD is an integral multiple of their
wavelength 4, X will be bright. Two in-phase

C
!

plone wove

Figure 2.2 The scattering of a plane wave at an

atom A through the formation of spherical wavelets

travelling at an angle 26 to the original direction of
motion

tsinld/ A

Figure 2.3 A schematic diagram showing the vari-
ation of the atomic scattering factor f, with (sin 6)/4

waves are shown in figure 2.4 arriving at X.
However, at other points on the screen, the
path difference may be such that the waves
are out of phase and the total intensity is very
low or zero. When this interference process is
considered over the whole screen, alternate bright
and dark lines are obtained running perpendicular
to the paper with the approximate intensity
distribution shown in figure 2.4. As « increases the
mtensity of the fringes decreases because the
efficiency for scattering through large angles is
lower. In the case of a three-dimensional crystal, a
similar path difference argument shows that the
diffraction of the monochromatic electron beam
by the regularly spaced three-dimensional array
of atoms gives an interference pattern of beams,
instead of lines.

The theoretical treatment of electron diffraction
patterns generally relies on the kinematical theory of
electron diffraction and the following assumptions.

(1) The incident beam is monochromatic, that
is the electrons all have the same energy and
wavelength.

(2) The crystal is free from distortion.

(3) Only a negligible fraction of the incident
beam is scattered by the crystal, that is every atom

intensity

plane wave

A

Figure 2.4 Diffraction of monochromatic light by
a line grating. Inset shows waves arriving at X in
phase
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in the crystal receives an incident wave of the same
amplitude.

(4) The incident and scattered waves may be
treated as plane waves. _

(5) There is no attenuation of the electron beam
with increasing depth in the crystal, that is no
absorption.

(6) There is no interaction between the incident
beam and the scattered wavelets, that is the re-
fractive index of the crystal is unity. :

(7) There is no re-scattering of scattered waves.

In the electron microscope, the above assump-
tions are not in general true. Nevertheless, the
kinematical approach is still satisfactory for a
general description of diffraction patterns. 1n
contrast, as we shall see in section 3, 1t Is necessary
to use the more realistic dynamical theory of
electron diffraction to interpret the details of most
images obtained in the electron microscope.

2221 The Bragg law

The above treatment of diffraction introduced the
important point that strong diffracted beams arise
because scattered wavelets are in phase 1n particuiar
directions 1 the crystal, that is the path difference
is an integral number of wavelengths. This leads
directly to a particularly simple mcthod of visu-
alising diffraction by a crystal, known as the Bragg
law. Figure 2.5(a} depicts the siiuation describing
diffraction in terms of the Bragg law for a trans-
mitting thin electron microscope specimen ~ {000 -
3000 A thick. Consider the particular case when
the incident beam is made up of plane waves in
phase and oriented at an angle 0 relative to two
(hkl) crystal planes I and . Let the two waves be
reflected by these crystal planes at an angle 0. At
the plane wavefront CD two situations may occur.

(1) The two waves may be in phase. as shown
in figure 2.5(a), in which case reinforcement wiil
occur and a strong reflected beam will be present.

(2) The waves may be out of phase, that is they
will interfere and there will be either zero or a very
weak reflecied beam.

Case (1), that is a strong beam, will occur if the
path difference POD is an integral number of
wavelengths ni. Since PD = OD = OLsin 6,
20L sin 6 = ni for a strong bearmn. However, OL
1s the interplanar spacing d,,. Thus. for a strong
reflection, we must have

2d 4y sin 0 = nia (2.3)

which is known as the Bragg law. In effect we have
shown that there will be a strong diffracted beam
on the exit side of the crystal only if there is a set of
crystal planes oriented at a critical angle 6 relative
to the incoming beam. For the present we may

incident electron
/ beam
» plone wove
top ot thin in phase
forl T
/o
crystal plone I~ g i
—crystal plane | |
1000-3000 A
|

bottom of
thin foil

(a)

incident electron
beam

diffracied

transmitied

tiearn bear

b}

Figure 2.5 (a) Retlection at the Bragg angle 8 from

crystal planes in a thin foil electron microscope

specimen:. (b) The relationship between incident,

transmitted and diffracted beams for a transmitting
specimen

postuiate that the reflective process is inefficient and
that some of the electrons are not reflected but
pass straight through the crystal. Thus there wilil
be both a transmitied and a reflected beam at the
bottom surface of the crystal with an angular
relation 20 (see figure 2.5(b)). In terms of ithe Bragg
law the diffracted beams are referred to as reflected
beams.

2.2.2.2 The Laue conditions

As an alternative to the above approach, diffraction
may be considered in terms of scattering by
individual atoms. This approach has the advantage
that it may be used more quantitatively to describe
diffraction in terms of the reciprocal lattice.
Figure 2.6(a) shows this case for atoms O and L
where the position of L relative to the origin O
may be described in terms of a vector r. The
incident and scattered waves are now described in
terms of the unit vectors p, and p, respectively.
Again the scattered waves will be in phase if the
path difference POD is an integral number of
wavelengths. We may write the distance PO in
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incident
wave

diffracted
wave

“(a)

Po/\ P/X

Figure 2.6 (a) The additive scattering from atoms
situated at O and L in a thin foil specimen. (b) The
vector diagram describing the scattering process

vector notation as r. p, and OD as r. p, that is
POD =r.p—r.py=r.(p — py). Defining a
scattering vector P = p — p, we have

POD =r.P=ni (2.4)

The relationship between p, p, and P may be
described in terms of the vector triangle shown in
figure 2.6(b) in which all vectors have been
normalised by dividing by the wavelength 4.

It is convenient to describe the position of each
atom relative to the x, y and z crystal axes instead
of the simple vector r. Thus we may resolve r . P

c

into the components P.a, P. b and P . c where
a, b and c are the repeat distances of the atoms
along the crystal axes. Each of these resolved
components must also be integral values of 4 and
we may express equation (2.4) as

P.a=hi
P.b = ki (2.5)
P.c=1I1i

where h, k and [ are integers. Equations (2.5) are
known as the Laue conditions which must be
satisfied for strong diffraction to occur and are
equivalent to the Bragg law.

2.2.3 The Reciprocal Lattice

The reciprocal lattice is important because it may
be used as a tool in conjunction with the Ewald
sphere cqnstruction to simplify. considerably the
interpretation of electron diffraction patterns as
described in section 2.2.4. The reciprocal lattice
derives directly from the Laue conditions described
in equation (2.5), because their solution is

P/i = ha* + kb* + lc* (2.6)

where a*, b* and c* are vectors defined such that
a.a*=b.b*=c.c*=1 and a*. b = b*. a,
etc. = 0. Equation (2.6) may be shown to be the
solution of equations (2.5) because forming the
scalar product of (2.6) with a we have P.a = hA,
the first Laue condition.

The conditions a.a* = 1 and a. b* = 0, etc.,
have -a simple physical explanation. The relation
a*.b = a*.c = 0 simply means that a* is per-
pendicular to b and ¢ and, by a similar argument,
b* is perpendicular to a and ¢ while c* is per-
pendicular to @ and b. This situation is depicted
for non-orthogonal axes in figure 2.7. In practice,
for crystal structures with orthogonal axes, that is
cubic, tetragonal, orthorhombic, the axes of the
reciprocal lattice coincide with the crystal lattice.
Therelationsa®* . @ = 1,etc.,definethe magnitudes
of the vectors as |a*| = 1/la| which is the origin of
the term reciprocal lattice.

The reciprocal lattice has the following two
properties.

Figure 2.7 The geometrical relationships between the reciprocal lattice vectors a*, b*, c¢* and the real lattice vectorsa, b, ¢
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(1) The vector gu, to the point (hkl) of the
reciprocal lattice is normal to the plane (hkl) of the
crystal lattice.

(2) The magnitude of g, is 1/d ., Where d
is the interplanar spacing of the family of (hkl)
planes (see appendix 1).

The first point may be proved with reference to
figure 2.8 which shows the (hkl) plane in the crystal
cutting the crystal axes at A, B, C. Then from the
definition of Miller indices (appendix 1) the (hkl)
plane intersects the axes at distances a/h, b/k and
¢/l. Consider the vector AB.

a b . b g
— - AB=- -2
p + AB i that is AB r  h
The scalar product g . AB will be zero if g is
perpendicular to AB. 5
g .AB = (ha* + kb* + lc’)-(i —‘%)

Evaluating with the aid of a.a* = 1,a*. b = 0,
etc., we find g . AB = 0. Because this product is
zero, g must be normal to AB. Similarly it may be
shown that g is normal to AC. Consequently,
because ¢ is normal to two vectors in the plane
(hkl), it is normal to the plane itself.

To prove the reciprocal relation between g and
d, let n be a unit vector in the direction of g.

a

d=ON=E'n
But
g
n==
lgl ,
d__g.l_g_(ha*+kb*+lc*)_1
holgl  h lgl g1

)
Figure 2.8 The geometrical relationship between
the plane normal and g

t From this point g, is abbreviated as g.

f =101

~1-(010)

Figure 2.9 The relationship between (a) crystal
planes, (b) equivalent reciprocal lattice points and
(c) the geometric description of equation (2.7)

Thus we have defined the reciprocal lattice as an
array of points, each point corresponding to a
particular (hkl) plane and defined by a vector
described by points (1) and (2) above. Figure 2.9
shows this relationship between planes in the real
lattice and points in the reciprocal lattice for a cubic
crystal structure. Each point is labelled with the
particular (hkl) indices of the corresponding re-
flecting plane. Note that a point (hkl) in reciprocal
space (figure 2.9(c)) is defined by the steps ha*
along the x axis, kb* along the y axis and Ic*
along the z axis. Thus, as shown in figure 2.9(c),t

Gy = ha* + kb* + Ic* 2.7)

2.2.4 The Reciprocal Lattice and Diffraction by a
Single Crystal

The process of diffraction using the Bragg law may
be readily visualised in terms of the reciprocal
lattice and the Ewald sphere construction. Re-
ferring to figure 2.6(b) we have described the
Bragg law in terms of a vector triangle. Equation
(2.6) describes the base of this triangle in terms of
the reciprocal lattice vectors a*, b*, c*, that is
P/A, and equation (2.7) defines the position of an
(hkl) reciprocal lattice point in the same terms. Thus
P/A = g defines the reciprocal lattice point.

The significance of this fact may be made clear
with reference to figure 2.10 in which a thin
single-crystal electron microscope specimen is
oriented in the electron microscope to produce
reflection from only one set of (hkl) planes.
Assuming a unit incident wave vector, that is
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Figure 2.10 {a) Reflection by a set of (hkl) crystal
planes, and (b) the vector diagram in reciprocal space
describing the same process

po = p = 1, the direction of the diffracted beam
may be obtained by constructing the following. .

(1) A line in the direction of tue incident beam
and with magnitude 1/4 running from a point L in
the reciprocal lattice to the origin of the reciprocal
lattice.

(2) A line LG of the same magnitude I/4 from
L to the reciprocal lattice point G described by
the vector g, for the particular (hkl) reflecting
plane.

In this way, we have reproduced the vector
diagram in figure 2.6(b) which describes the Bragg
law and have defined the direction of the diffracted
beam. Because the reciprocal lattice is three-
dimensional and LO and LG are both equal to
1/4, the construction in figure 2.1((b) represents a
small part of a sphere radius 1/4 in reciprocal space.
known as the Ewald or reflecting sphere with centre
defined by (1)above. The Ewald sphere construction
in the reciprocal lattice is extremely important
because it immediately and sunply describes the
form of the diffraction paitern for a given incident
beam direction in the crystal, see section 2.4 for
further discussion."

2.3 A Quantitative Approach to Diffraction from
a Crystalline Specimen

2.3.1 The Structure Factor

The structure factor describes the contribution of
the entire unit cell to the diffracted intensity. Up
to this point diffraction has been considered in
geometrig terms and both the position of atoms in
the refleéting plane and atomic identity have been
ignored. The structure factor enables both of these
factors to be included in the description of the
diffraction process, and leads to either systematic
absence of reflections or differences in intensity
from one (hk!) reflection to another.

A physical picture describing the importance of
both atomic position and identity is presentéd in
figure 2.11 in terms of the Bragg law. The first-order
reflection which might be expected from a cubic
crystal structure is {001}. For such a ‘irst-order

refiection n = | and a path difference of 1 would
occur for waves reflected from successive (6G01)
planes A in figure 2.11(a). However, waves will
also be reflected from the layer of atoms (B plane)
situated halfway between the (001) planes. Because
these are 4/2 out of phase with those from the A
planes destructive interference will occur and the
overall reflected intensity will be zero. Consequently
for a body-centred cubic (b.c.c.) crystal structure
[001} reflections are absent. Figure 2.11(b) shows
that second-order reflections from (002) planes will
be present because the path difference between the
A planes will be 24 and there is complete reinforce-

*ment with wave’s reflection from B planes which

have a path difference of A. Similar reasoning shows
that the first-order (111) reflection is absent for
the b.c.c. crystal structure whereas the (222)
reflection is present. Consideration of systematic
absences from other reflecting planes enables a
rule to be formulated which states that, for this
crystal structure, if h + k + | is odd, then the
reflection is absent.

Scattering from a unit cell may be expressed more
rigorously in terms of atomic scattering factors and
a path difference argument applied to scattering by
each atom within it. This enables the structure
factor F defined as

amplitude of the wave scattered by
ail the atoms of a unit cell

“amplitude of wave scattered by an electron
to be calculated.

Consider the position of the nth atom in the
unit cell in figure 2.12. The vector r, defines the

reflected
A electrons
/ A /2 out
e e | of phase
el
| ,/A/c‘ out
I :,/§ 5 of phase
11 N —1
gl Rl
-
1 e -
T - A
(
A /
—— L % ou or
_ > »
i ///
T — A s
- —1 i se
Fet S
A1 R
» -
—~— h
4\\% = _:/ A

Figure 2.11 The phase relationships for reflection
by the layers of atoms shown for (a) (001) and (b) (002)
reflections in a b.c.c. crystal structure
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Figure 2.12  The nth atom in the unit cell

position of the atom in terms of the fractions x,,

¥y, z; of the unit vectors a, b, ¢ along the x, y, z

axes as
r,=x,a + y;b+ z;¢ (2.8)

n

The path difference between an atom at the
origin of the unit cell and the nth atom is (r,. P)
and theresultant phasedifference ¢ = 2n/4 x path
difference, that is

¢ = kr,. P

where k = 2n/A.

The structure factor F is the sum of the scattered
amplitudes of the individual atoms f, and all the
phase differences arising from all path differences,
that is

F =Y f exp(i¢,) = Y f,exp (ikr,.P) (2.9)

Substituting equations (2.6), (2.8) for r, and P
we have

r,. P = Mhx, + ky, + Iz))
that is
Fyu = Y foexp (2ni(hx, + ky, + Iz,)}
(2.10)

The presence or absence of reflections in the
b.c.c. crystal structure can be obtained mathe-
matically from the above structure factor equation
as follows.

Intensity of diffracted beam is proportional to

|F|? = [f, cos {2n(hx, + ky, + Iz,)}
+ fycos {2n(hx, + ky, + lz,)} + .. .]*
+ [ fi sin {2n(hx, + ky, + lz,)}
+ fysin {2n(hx, + ky, + lz,)} + .. .]?
that is
|F|12 = Zﬁ cos {2n(hx, + ky, + lz,)}

+ X fisin 2n(hx, + ky, + 1)} Q21D

For b.c.c. metals there are identical atoms at
coordinates 000 and 433 in the unit cell as shown

in figure 2.11. Thus the intensity
h k| 2
I o f? 2r. 0 ~+ =+ =
o f [cos( n.0) + cos {27:(2 + 5 + 2)}}
B k I 2
2lsin(2n. 0 in<2n| -+ - + =
+ f [sm( n )+sm{ n(2+2+2)}]

(2.12)
I o f2[1 + cos {nth + k + 1)}]?
+f2[sin {2nth + k + V)P (2.13)

that is I = 0 if h + k + [ is odd, as pointed ouit
earlier in this section.

If the above argument is applied to an ordered
intermetallic compound with the B, structure such .
as NiAl, the atom at 000 will be Ni and that at $33
will be Al. Consequently, since the atomic scattering
factors are not the same, the diffracted intensity is

I oc [fai + facos {mh + k + 1)}]?

+ [fusin {nh + k + D}]? (2.14)
that is
I o (fiy + fa)? when h + k + [is even
and
I o (fyi — fa)* whenh + k + [is odd

Thus {001} reflections will occur with an intensity
proportional to the difference in scattering factors
of the atoms in the material and are generally
less intense than the fundamental reflections. Such
reflections are known as superlattice reflections
and mag or may not be present for the same
superlattice depending upon the difference in
atomic scattering factor (that is atomic number)
of the constituent atoms. Table 2.1 shows structure
factor information in relation to the absence of
reflections in specific crystal structures. A detailed
description of structure factors for all crystal
structures will be found in the International Tables
for X-ray Crystallography (1962).

A physical picture describing the occurrence of
superlattice reflections may be obtained from
figure 2.11(a). The atoms in the B plane would be

Table 2.1  Structure factor effecis

Structure Reflections absent if
simple cubic all present
f.c.c. (Al, Cu,etc.) h, k.1, mixed odd and even
b.cc. (V, W, a-Fe) h + k + lodd
c.ph. (o-Ti, Zr, Mg) h + 2k = 3nand lis odd
b.c.t. (martensite o-Fe) h + k + [ odd

zinc blende (complex cubic) ZnS  h, k, I, mixed odd and even

sodium chloride NaCl h, k, I, mixed odd and even

diamond (Si, Ge) hok,lallevenand h + k + |
not divisible by four, or A,
k, I mixed odd and even

fc.c., face-centred cubic; b.c.c., body-centred cubic; c.p.h.,
close-packed hexagonal: b.c.t., body-centred tetragonal.
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Figure 2.13 The reciprocal lattice for f.c.c. crystal
structures

different from those in the A planes and, although
the waves interfere as shown before, their intensities
are not equal. Consequently a weak (001) super-
lattice reflection will occur with an intensity
depending upon the difference in atomic scattering
factors of the constituent atoms, as pointed out
before.

It is important to relate the results of these
structure factor calculations to the reciprocal
lattice. In effect, if the structure factor is zero, the
reciprocal lattice point is removed because no
reflection will be present in any diffraction pattern.
Thus, using the selection rules in table 2.1 for all
f.c.c. crystals, the reciprocal lattice is b.c.c. and
may be indexed as shown in figure 2.13. For a
b.c.c. crystal the reciprocal lattice is f.c.c.

2.3.2 The Intensity Distribution in
Reciprocal Space

After having considered the influence on diffracted
intensity of atomic position and identity within the
urit cell, it is necessary to consider the diffracted
intensity from the large array of unit cells that go
to make up the electron microscope specimen.
Figure 2.14(a) shows a thin electron microscope
specimen made up of N,N N_ unit cells along the
x, y and z axes. The position of the nth unit cell
relative to the origin may be defined by the vector
r = n.a + nb + n,cwherea, b, care unit vectors
along x, y, z respectively.

Thus, if F is the structure factor of each (identical)
unit cell the total scattered amplitude A is the sum
of all the phase differences ¢ = ka . P along the
x, y and z axes for N, N, and N, unit cells, that is

ny=Nz—-1

A=F Y expl(ikna.P)
ne=0

ny,=Ny,—1
X 3
ny=0

n,=Ny—1
x X

n,=0

exp (iknb . P)

exp (ikn,c . P) (2.15)

Each of these terms is a geometric progression of
the form

m=N-1

Y Xm=X°+ X'+ X2, xv... x"!
m=0

1= X

T x (2.16)

Thus the first part of equation (2.15) may be
written
~=Nx=11 — exp (ikN,a . P)
1 — exp (ika . P)

(2.17)
ne=0
Multiplying equation (2.17) by its complex con-
jugate
5P - I —cos(kN.,a.P) sin?(3N,ka.P)
"~ 1 —cos(ka.P) ~ sin?(tka.P)

‘ (2.18)

Thus the expression for the total diffracted
intensity 1s
sin? (3N ka . P)
sin? (ka . P)
g sin® (3N kb . P)
sin? (3kb . P)
sin? (AN _kc . P)
sin? (3kc . P)

|4]* = |FI* x

o (2.19)

Strong diffraction by the crystal will occur when
|A]? is a maximum, that is when each term I-III
is a maximum. It has been shown previously that

approx 500 units
r.—~ e y cell

x
Ny / effectively

infinite
real space
(a)
equation(2 20

artitrary
anits

B a a
x axis of reciprocal
space

(b

Figure 2.14 (a) The position of the nth unit cell in

an electron microscope specimen consisting of N_,

N, and N, unit cells in the x, y, z directions respective-

ly. (b) The variation of equation (2.20) along the
x axis of reciprocal space
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the diffracted wave vector P is a maximum when

P/A = g. Substituting equation (2.6) into term I
of equation (2.19) we have

sin? [4N,ka . {A(ha* + kb* + Ic*)}]
sin? [Lka . {A(ha* + kb* + Ic*)}]

is a maximum if a. {A(ha* + kb* + Ic*)} = hi
and zero if it is hA/N,. Thus, in effect this term
maps ‘the diffracted intensity as a function of
position ZOng the x axis of reciprocal space as
shown in figure 2.14(b). The fact that the diffracted
intensity falls very rapidly to zero on moving a
small distance 1/N, from the reciprocal lattice
point for a large crystal shows that the reciprocal
lattice does indeed consist of an array of points.

(2.20)

2.4 The Reciprocal Lattice and Transmission
Electron Diffraction in the Electron
Microscope

In most cases electron microscope diffraction
patterns are obtained from individual grains and
therefore are single-crystal diffraction patterns.
They are most easily visualised in terms of the
Ewald sphere construction in the reciprocal lattice,
but first the reciprocal lattice must be modified to
take accodnt of the thin sheet shape of the electron
microscope specimen using the results of equation
(2.19). It was shown in section 2.3.2 and figure
2.14(b) that the width of the reciprocal lattice
pointis 2/N,, 2/N and 2/N, in the x, y, z direction.
However, the typical electron microscope specimen
shown schematically in figure 2.14(a) is a sheet,
effectively infinite in its xy plane but finite along
the z direction, that is ~500 unit cells thick.
Consequently the reciprocal lattice points are very
narrow in the z and y directions with intensity
distributions of the form shown schematically in
figure 2.15(b). In contrast the intensity distribution
around the reciprocal lattice points in the z
direction is much broader than in the x and y

\ direction of
diffracted beom

direction of
incident beam

Ewald
sphere~——__

origin of g
reciprocal space

intensity (orbitrary
units)

intensity
{arbitrary
units) Y

(@ (b)

r'4
002 202
022 ’/{';;7!
e (1
1 1
 ooofl__{20
L7 Ty
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Figure 2.15 (a) and (b) The resulting approximate

intensity distribution in reciprocal space parallel to

z and y, respectively. The eftective sireaking of all

points in reciprocal space normal to the specimen
surface is shown in (c)

directions owing to the thinness of the sheet, see
figure 2.15(a). Consequently the reciprocal lattice
points must in fact be treated as streaks parallel
to z, the foil normal, see figure 2.15(c). This is
equivalent to stating that the Laue condition in
the direction z is relaxed and thus a significant
diffracted intensity will be obtained even when the
Bragg condition is not exactly satisfied. The
modified Ewald sphere construction which takes
account of this is shown in figure 2.16. A vector s
is defined describing the deviation from the exact
Bragg position when the Ewald sphere cuts the
streak. Clearly, as s increases, the diffracted
intensity will decrease, see figure 2.16 and if s # 0
the reciprocal lattice vectorisg’ = g + s.

The above discussion has important implications
for electron diffraction in the electron microscope
that can be readily seen with the aid of the Ewald
sphere construction in figure 2.17. Here the
position of the thin foil is indicated, together with
the direction of the incident beam. Although
it is only a device to aid interpretation of diffraction

intensity
—=— (grbitrary units)

Figure 2.16 The definition of vectors g, s, g + s in terms of the Ewald sphere construction in reciprocal space



