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INTRODUCTION

The subject of these notes is a part of commutative algebra, and is also
closely related to certain topics in algebraic number theory and algebraic geometry.
The basic problems in Galois theory of commutative rings are the following: What
is the correct definition of a Galois extension? What are their general properties
(in particular, in comparison with the field case)? And the most fruitful question
in our opinion: Given a commutative ring R and a finite abelian group G, is there
any possibility of describing all Galois extensions of R with group G?

These questions will be dealt with in considerable generality. In later chapters,
we shall then apply the results in number-theoretical and geometrical situations,
which means that we consider more special commutative rings: rings of integers
and rings of functions. Now algebraic number theory as well as algebraic geometry
have their own refined methods to deal with Galois extensions: in number theory
one should name class field theory for instance. Thus, the methods of the general
theory for Galois extensions of rings are always in competition with the more
special methods of the discipline where they are applied. It is hoped the reader
will get a feeling that the general methods sometimes also lead to new results
and provide an interesting approach to old ones.

Let us briefly review the development of the subject. Hasse (1949) seems to
have been the first to consider the totality of G-Galois extensions L of a given
number field K. He realized that for finite abelian G this set admits a natural
abelian group structure, if one also admits certain "degenerate" extensions L/K
which are not fields. For example, the neutral element of this group is the direct
product of copies of K, with index set G. This constitutes the first fundamental
idea. The second idea, initiated by Auslander and Goldman (1960) and then brought
to perfection by Chase, Harrison, and Rosenberg (1965), is to admit base rings R
instead of fields. It is not so obvious what the definition of a G-Galois extension
S/R of commutative rings should be, but once one has a good definition (by the
way, all good definitions turn out to be equivalent), then one also obtains nice
functoriality properties, stability under base change for instance, and the theory
runs almost as smoothly as for fields. Harrison (1965) put the two ideas together
and defined, for G finite abelian, the group of all G-Galois extensions of a given
commutative ring R modulo G-isomorphism. This group is now called the Harrison
group, and we denote it by H(R,G). Building on the general theory of Chase.
Harrison, and Rosenberg, and developing some new tools, we calculate in these
notes the group H(R,G) in a fairly general setting.
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The principal link between this theory and number theory is the study of
ramification. Suppose L is a G-Galois extension of the number field K, ¥ a set of
finite places of K, and R = O s the ring of Z-integers in K. Then the integral
closure § of R in L is with the given G-action a G-Galois extension of R if and
only if L/K is at most ramified in places which belong to . In most applications,
X will be the set of places over p. The reason for this choice will become apparent
when we discuss Z -extensions below.

We now discuss the contents of these notes in a little more detail.

After a summary of Galois theory of rings in Chap. 0, which also explains
the connection with number theory, and Zp—extensions. we develop in Chap. I a
structure theory for Galois extensions with cyclic group G = Cp" of order p", under
the hypothesis that p~! € R and p is an odd prime number. For technical reasons,
we also suppose that R has no nontrivial idempotents. Since the Harrison group
H(R, G) is functorial in both arguments, and preserves products in the right argu-
ment, this also gives a structure theory for the case G finite abelian, |G|™! € R.

The basic idea is simple. If R contains a primitive p"—th root of unity { (this
notion has to be defined, of course), and p~! € R, then Kummer theory is available
for Cpn—extensions of R. The statements of Kummer theory are, however, more
complicated than in the field case: it is no longer true that every Cpn-extension
S/R can be gotten by "extracting the p"-th root of a unit of R", but the obstruc-
tion is under control. The procedure is now to adjoin { to R somehow (it is a lot
of work to make this precise), use Kummer theory for the ring S obtained in this
way, and descend again. Here a very important concept makes its appearance.
A G-Galois extension S/R is defined to have normal basis, if S has an R-basis of
the form {y(x)|y e G} for some x € S. Fo G = Cpn, the extensions with normal
basis make up a subgroup NB(R.CP,.) of H(R,Cpn). In Chap. I we prove rather
precise results on the structure of NB(R,Cpn). and of H(R,Cp,‘)/NB(R,Cpn). In the
field case, the latter group is trivial, but not in general. Kersten and Michali¢ek
(1988) were the first to prove results for NB(R,CP,,). Our result says that
NB(R,CP,.) is "almost"” isomorphic to an explicitly given subgroup of S:/(p"—th
powers), and H(R,Cpn)/NB(R,Cp,,) is isomorphic to an explicitly given subgroup
of the Picard group of S, . The description of NB(R,CP,.) is basic for the calcula-
tions in Chap. IIl and V.

In Chap. Il we treat corestriction and a result of type "Hilbert 90". This
amounts to the following: We get another description of NB(R,CP,.), this time as
a factor group of S:/(p"-th powers). This is sometimes more practical, as wit-
nessed by the lifting theorems which conclude Chap. II: If I is an ideal of R, con-
tained in the Jacobson radical of R, then every Cp,,—extension S of R/I with normal

basis is of the form S =« T/IT, T ¢ NB(R,CP,,).
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In Chap. Il we set out to calculate the order of NB(R,CP,‘), where now
R= OK[p_‘], K a number field. Although one almost never knows the groups S:
explicitly, which are closely related to the group of units in the ring of integers
of K (Cn), one can nevertheless do the calculation one wants, by dint of some tricks
involving a little cohomology of groups. All this is presented in a quite elementary
way. We demonstrate the strength of the method by deducing the Galois theory
of finite fields, and a piece of local class field theory. The main result for number
fields K is that with R as above, and n not "too small”, the order of NB(R.Cp,l)

(1 +ry)n

equals const'p , where r, is half the number of nonreal embeddings K - C

as usual.

The goal of Chap. IV is to get an understanding, how far the subgroup
NB(R.CP,,) differs from H(R.Cpn), and a similar question for Zp in the place of
Cp,,. Here H(R,Zp) is the group of Zp—extensions of R. A Zp-extension is basically
a tower of Cp,.—extensions, n - o, It is known that all Zp—extensions of K are
unramified outside p, and hence already a Z -extensions of R, which justifies the
choice of the ring R.

We prove in 1V §2: NB(R,ZP) ZP”"Z. This was previously proved in a spe-
cial case by Kersten and Michali¢ek (1989). The result is what one expects from
the formula for INB(R.Cpn)l, but the passage to the limit presents some subtleties.
The index q, = [H(R,Cp,,):NB(R,Cp,,)] is studied in some detail, and we show that
q, either goes to infinity or is eventually constant for n - «. The first case con-
jecturally never happens: we prove that this case obtains if and only the famous
Leopoldt conjecture fails for K and p. Another way of saying this is as follows:
NB(R,ZP) has finite index in H(R,ZP) if and only if the Leopoldt conjecture is true
for K and p. We give results about the actual value of that index; in particular, it
can be different from 1.

Apart from adjoining roots of unity, there is so far only other explicit way
of generating large abelian extensions of a number field K, namely, adjoining torsion
points on abelian varieties with complex multiplication. We show in IV §5 that
Zp—~extensions obtained in that way tend to have normal bases over R = OK[p"l],
and a weak converse to this statement. These results are in tune with the much
more explicit results of Cassou-Nogues and Taylor (1986) for elliptic curves.

There is a change of scenario in Chap. V. There we consider function fields
of varieties over number fields. Such function fields are also called absolutely fini-
tely generated fields over Q. After some prerequisites from algebraic geometry, we
show a relative finiteness result on Cp,,-Galois coverings of such varieties, which
is similar to results of Katz and Lang (1981), and we prove that all Zp—extensions
of an absolutely finitely generated field K already come from the greatest number
field k contained in K. In other words: for number fields k one does not know how



many independent Zp—extensions k has, unless Leopoldt's conjecture is known to

be true for K and p, but in a geometric situation, no new Zp—extensions arise.

The last chapter (Chap. VI) proposes a structure theory for Galois extensions
with group Cpn, in case the ground ring R contains a primitive p"-th root of unity
[, but not necessarily p~! € R. It is assumed, however, that p does not divide zero
in R. Even though Kummer theory fails for R, we may still associate to many
Cpn—extensions S/R aclass ¢ (S) = [u] in R* mod p" -th powers. If R is normal,
S will be the integral closure of R in R[p_‘,an/E]‘ The main question is: Which
units u € R* may occur here? In §2 we essentially perform a reduction to the case
R p-adically complete. Taking up a paper of Hasse (1936), we then answer our
question by using so—called Artin-Hasse exponentials. It turns out that the admis-
sible values u are precisely the values of certain universal polynomials, with para-
meters running over R. Reduction mod p also plays an essential role, and for this
reason we have to review Galois theory in characteristic p in §1. In the final §6
the descent technique of Chap. I comes back into play. In §4-5 a "generic” Cpn—
extension of a certain universal p-complete ring containing { (but not p~!) was
constructed, and we are now able to see in detail how this extension descends
down to a similar ground ring without { , to wit: the p—adic completion of 7Z[X].
This extension is, roughly speaking, a prototype of Cp,.—extensions of p-adically
complete rings. All this is in principle calculable.

Most chapters begin with a short overview of their contents. Cross references
are indicated in the usual style: the chapters are numbered 0, I, II, ..., VI, and a
reference number not containing 0 or a Roman numeral means a reference within
the same chapter. All rings are supposed commutative (except, occasionally, an
endomorphism ring), and with unity. Other conventions are stated where needed.

Earlier versions of certain parts of these notes are contained in the journal
articles Greither (1989), (1991).

It is my pleasurable duty to thank my colleagues who have helped to improve
the contents of these notes. Ina Kersten has influenced the presentation of earlier
versions in many ways and provided valuable information. Also, the helpful and
detailed remarks of several referees are appreciated; I like to think that their
suggestions have resulted in a better organization of the notes. Finally, I am
grateful for written and oral communications to S. Ullom, G. Malle, G. Janelidze,
and T. Nguyen Quang Do.
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CHAPTER 0

Galois theory of commutative rings

§1 Definitions and basic properties

The study of Galois extensions of commutative rings was initiated by Auslander
and Goldman (1960) and developed by Chase, Harrison, and Rosenberg (1965). In
this section we shall try to present the basics of this theory. Occasionally we
refer to the paper of Chase, Harrison, and Rosenberg for a proof. Almost every-
thing we say in this section is can be found there, or in the companion paper
Harrison (1965), sometimes with proofs which differ from ours.

Let G be a finite group, K C¢ L a field extension. Then, as everybody agrees,
L/K is a Galois extension with group G if and only if:

G is a subgroup of Aut(L/K), the group of automorphisms of L
which fix all elements of K; and

K = LS, the field of all elements of L which are fixed by every
automorphism in G.

A literal translation of this definition would result in a too weak definition in the
framework of commutative rings, for many reasons. Let us not pursue this, but
rather point out two alternative definitions of "Galois extension” in the field case
which turn out to generalize well, and which indeed give equivalent generalizations.
Thus, we will have found the "correct” notion of a Galois extension of commuta-
tive rings. Suppose that G is a finite group which acts on L by automorphisms
which fix all elements of K. We thus have a group homomorphism G - Aut(L/K).

Definition 1.1. The K-algebra L#G is the L-vectorspace EBoec Lug (the u
formal symbols), with multiplication given by (Auy)(pu) = h-oly)u
The map j: L#G - End, (L) is given by

are just
(X,uel).

G
oT

JOwug) = (w+— X-olu)) € End, (L).

Proposition 1.2. j is a well-defined K-algebra homomorphism, which is bijective iff
G is embedded in Aut(L/K) and L/K is a G-Galois extension.

Proof. The first statement is easy to check. Assume G C Aut(L/K) and L/K is
G-Galois. Then by Dedekind's Lemma the elements ¢ of G are L-left linearly inde-
pendent in End, (L), hence j is a monomorphism. Since dim,(L#G) = [L:K]? =
dim End, (L), j is bijective.
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If G > Aut(L/K) is not injective, then there exist ¢ + 1 in G with j(c) = j(1),
i.e. j cannot be monic. If G embeds into Aut(L/K) but L/K fails to be G-Galois,
then there exists x € L\ K fixed under G. A short calculation shows then that / =
(left multiplication by x) commutes with Im(j) C End, (L). If j were surjective, we
would have /_ in the center of End, (L), i.e. x € K, contradiction.

Definition 1.3. The K-algebra L'®’ is defined to be the set of all maps G - L, endo-
wed with the obvious addition and multiplication. (Note that L®, without brackets,
denotes a fixed field.) Let h: L ®, L — L'®’ be defined by h(x®y) = (x-o(y)) ;¢ -

Proposition 1.4. The map h is a L-algebra homomorphism (here L operates on the left
factor of L ®, L), and h is bijective iff G embeds into End, (L) and L/K is G-Galois.
Proof. The first statement is obvious. Pick a K-basis y,, . . ., y, of L. Then 1®y,,
... 1®y is an L-basis of L®, L. Thus we see that h is bijective iff the matrix
(°(Y:))oeG,lsisn has full rank (note that this is indeed a square matrix). The latter
condition says that the images of all ceG are L-left linearly independent in
End, (L), or (what is the same) that the map j of 1.1 is injective. Hence 1.4 follows
from 1.2.

Motivated by these descriptions of Galois field extensions, we define for any
finite group G:

Definition 1.5. An extension R C S of commutative rings is a G-Galois extension, if
G is a subgroup of Aut(S/R) = {p: S > S|¢ R-algebra automorphism}, such that
R = S€ (fixed ring under G), and the map h: $§®,5 — S'©, h(x®y) = (xo(y)) ¢
exactly as in 1.3, is bijective, or (what is the same) an S-algebra isomorphism.

Examples: a) Galois extensions of fields are obviously a special case.

b) For any commutative ring R we have the trivial G-extension S = R'®’ which
is defined as follows: The algebra R'®’ is again just Map(G, R) with the canonical
R-algebra structure, and the action of G is given by index shift:

c((xT),rec)) = (x;g5)eec for o € G, (x) o€ RO,

It is an easy exercise to prove that in this case indeed S = R and h is bijective.
We shall see more examples below.

There exist plenty of other definitions, or rather characterizations, of G-Galois
extensions of commutative rings. Some of them are listed in the next theorem:

Theorem 1.6. [ Chase-Harrison-Rosenberg (1965), Thm. 1.3]: Let R C S be commu-
tative rings, G C Aut(S/R) a finite subgroup such that S¢ = R. Then the following
conditions are equivalent:

(i) S/R is G-Galois (i.e. per def.: h: S ®, S — S'© s bijective);

(i) h: S ®, § — S'9 is surjective;



(iii) S is a finitely generated projective R-module, and the map j: S#G > End_(S)
(defined as in 1.1) is bijective;

(iv) For any o € G\{e.} and any maximal ideal M C S, there exists yeS with
oly) - y not in M.

Proof. Let us first reformulate condition (ii). One sees easily that h is compatible
with the G-action, where G acts naturally on the second factor of § ®,S, and by
index shift on $‘¢, exactly as in example b) above. Therefore h is surjective iff
the element (1, 0, . . ., 0) is in Im(h) (the 1 is at position e_). Letting Yx,®y, be a
preimage of (1, 0, . . ., 0) under h, we get the following reformulation of (ii):

n

(ii') There exist neN and x,,....x , y,,....p, € S such that ¥" x,(y) is 1 or 0,

according to whether 6 = e, or ¢ % e,. (We may write X x,0(y,) = 3 o.)

G

(i) = (ii): This is trivial.

(ii') = (iii): We first show that .S is finitely generated projective. Define the trace
tr: § > R by tr(y) = X goly). (tr is well-defined since S¢ = R, and R-linear since
all o € G are R-linear.) Let ¢,: S >R be defined by ¢,(z) = tr(zy,), z € S. Then the
formula of (ii') implies by direct calculation: z = ¥ ¢,(z)-y, for all z € S, i.e. the
pairs (x,,¢,) are a dual basis for .S, which is hence finitely generated projective.

Now we may, by localization, assume hat S is even finitely generated free
over R, with basis x,',...,x ', say. We may then assume that the x, in condition (ii')
are just the x,', because every element of $® S can be written in the form Yx '®y',
and it does not matter just how we write a preimage of (1,0,...0) under h. Let us

therefore omit the '

again. From the calculation just performed we get x=
Zlip,(xj)-xi, hence by definition of ¢,, and since the x, are a basis, tr(xjy,) = 811"
As in the field case, bijectivity of j is equivalent to invertibility of the matrix A
= (o(x,)); ,. One calculates as follows: Let B = (T(yj))j,r. Then AB = (3, ) =
unit matrix (use (ii')), and BA = (tr(xj.yl))jl = unit matrix. Hence A is invertible,

and j is bijective.

(iii) = (i): Since S is finitely generated projective over R, we may again assume
that S is free over R, with basis x,,....x . As in the last paragraph, j is bijective iff
the matrix A = (0(":))0,1 is invertible. As in the field case, this is again equivalent
to the bijectivity of h.

(ii') = (iv): Just suppose o *+ e, ( = id), and o(y)-y € M for all yeS. Then 1 =
X, x,(y,—oly)) € M, contradiction.

(iv) = (ii'): We first construct a solution of the formula in (ii') for a single o + e

By (iv), the ideal of S generated by all y-o(y) is contained in no maximal ideal,

hence is equal to S. One finds hence n; € N and xx(O)""’xr(a?' y(1°),...,y,(zg) €S

with Z,x‘(O)-(y‘(O)—o(yl("))) = 1. Now one lets x, = Z‘n:'f x‘(°)-o(y(°)) and y, = -1.
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We then get (summation from 0 to ny): in(")-yl(") =1and X xl(O)-o(yl(G)) = 0.
Now one shuffles together these solutions for individual o to a solution for all ¢
as follows: Let I be the index set [[;cG\e{0.....ns}; for each i € I, let x; be the
product of all xi(o) with ¢ + e, and y; similarly. One can then check that indeed

for all ¢ € G: Zklxio(y‘) is equal to 3 q.e.d.

c,e’

In our opinion, it is instructive to use the theory of faithfully flat descent al-
ready at this early stage of Galois theory of rings. To this end, recall that an
R-module M is faithfully flat if M is flat, and M/PM % 0 for each maximal ideal
P of R. It is another characterization of faithful flatness that the functor M ®  —
preserves and detects short exact sequences of R—-modules. One has the following
easy results:

Proposition 1.7. [Knus-Ojanguren (1974), Bourbaki Alg. comm. I §3] Let M be a faith-
fully flat R—-module, and ¢: A~ B a homomorphism of R-modules. Then ¢ is an iso-
morphism iff M® ,¢: M® , A> M®_ B is an isomorphism. The statement remains cor-

rect, if the word "isomorphism" is replaced by "monomorphism", or by "epimorphism".

This simple result already has applications. Suppose T is an R-algebra which
is a faithfully flat R—-module, and suppose S is a ring extension of R such that the
finite group G acts on S by R-automorphisms. One can then state

Proposition 1.8. Under these hypotheses, S/R is a G-Galois extension if T®,S is a
G-Galois extension over T.

Proof. We may consider T = T®, R as a subalgebra of T®, S, since T is flat. We
use the defining property of "G-Galois" and check that the map
hy: (T® S)e (Te, S) — (Te, S)?

associated in Def. 1.5. with the extension T C T®_,S is, up to canonical isomor-
phism, just T® h (where h: S®, S — S is the map of Def. 1.5. for the extension

C S). By 1.7, if T®h is an isomorphism, then so is h. We still have to show that
S¢ = R, i.e. the canonical map t: R > S¢ is onto. But it follows from the flatness
of T that (T®,S)¢ = T®, S% hence T® is onto. By 1.7, we are done.

The converse of 1.8 is "more than true”, in the sense that base change always
preserves G-Galois extensions (not only faithfully flat base change). We will see
this a little later.

Lemma 1.9. Any G-Galois extension S/R is faithfully flat over R.

Proof. Flatness is clear since S/R is projective by Thm. 1.6 (iii). Pick a maximal
ideal P of R; we need S/PS # 0. By Nakayama, it suffices to see §,+0. But R C S,

and localization preserves monomorphisms, so we are done.

This lemma suggest to try out S in the role of T; the result is strikingly
simple, but we first need to define morphisms of G-Galois extensions:
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Definition. If S and S' are two G-Galois extensions, then a morphism ¢: S > §' is
a G-equivariant R—algebra homomorphism from S to §'. (G-equivariance means of
course: ¢(ox) = op(x) for all 6 € G, x € §.) The G-Galois extension S/R is called
trivial, if it is isomorphic to the trivial extension R'¢’/R.

Remark. It is obvious that we obtain a category GAL(R,G) of G-Galois extensions
of a given ring R.

Now we can see that "base-extending any Galois extension with itself gives a
trivial extension”. More precisely: Let S/R be a G-Galois extension, let T = §, and
consider the ring extension T®, S/T. Since T = §, it is now easy to check that the
isomorphism h: S®,S - S$'@ gives an isomorphism of G-Galois extensions h:
T®e,S~> T'¢. Recall that G operates naturally on the second factor S, and by index
shift on $'¢). We now can prove a result on the trace:

Lemma 1.10. Let S/R be G-Galois, and tr: S — R the trace (see proof (ii'’) = (iii) of
1.6). Then:

a) tr: S > R is surjective

b) The R-submodule R of S is a direct summand of S.

Proof. a) By the previous remarks, S®S/S®R (= S) is isomorphic to the trivial ex-
tension of §. One has a commutative diagram

S@R S e IO S(G)

Sotr l l"s

Se,R —— §

where tr¢ is the trace associated to the extension $'¢’/S. § is embedded diagonally
in $“’, and one sees from the way G acts on $'%' that tr (x,0,....0) = (x.x,....x) =
diag(x) for all x € S. Hence tr¢ is onto; by 1.7, tr is onto.

b) Pick ¢ € § with tr(c) =1, and let f: S > R be defined by f(x) = tr(cx). Then
f is an R-linear section of the inclusion R C §, so R is a direct summand of S.

Now we can show:

Lemma 1.11. Let S/R be G-Galois, and T any R-algebra. Then T®,S/S is again a

G-Galois extension.

Proof. Write S, for T® , S.We want three things: T embeds in S, S, = T, and h;:
S, 8,8, — ST(G’ is an isomorphism. The last condition is the easiest to see,
since we know already that h, is (up to canonical isomorphism) just T®h, and h is
an isomorphism by hypothesis. Since R splits of in S, the map T - S, also splits,
in particular T is a subring of §,. To see the second condition, we argue as in
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Chase—-Harrison—-Rosenberg (1965): Pick ¢ € S with tr(c) = 1 (Lemma 1.10). and let
y € S, be fixed under G. Then y = (Tewr)lec)y = X ;(eclc))y =
Z5(Teo)((1®c)y) = (Tewr)((1®c)y) € Im(Tewr) = Te®R = T, qed.

As another example of this descent technique, we show the following impor-
tant fact:

Proposition 1.12. Ler S/R and S’/R be G-Galois. Then every morphism ¢: S > S’ of

G-Galois extensions is an isomorphism.

Proof. There exists a faithfully flat R-algebra T such that both §, (= T®,S) and
§', are trivial G-extensions of T. (Trivial G-extensions are obviously preserved by
arbitrary base change. Hence one can for example take T = S®_ S', since base ex-
tension with S (resp. §') trivializes S/R (resp. S'/R).) It is obvious that T®¢ is a
morphism from §, to §',. We may now suppose, by virtue of 1.7, that T = R (fresh
notation), § = S' = R'®). Moreover it is harmless to suppose R local. Let now e°
€ R'® be the element with 1 in position ¢ and 0 elsewhere (6 € G). These €°, 6 € G,
are a complete set of irreducible idempotents of R'®’, and they are permuted by G

in an obvious fashion. In particular, G permutes the e°

transitively. Getting back
to our morphism ¢, we now see that the ¢(e®) are pairwise orthogonal idempotents
with sum 1. If any of them is zero, then all are zero since ¢ is G-equivariant, so
no ¢(e%) is zero. Therefore ¢ must simply permute the e®, which implies immedia-

tely that ¢ is an isomorphism.

§2 The main theorem of Galois theory

We fix a finite group G and a G-Galois extension S/R of (commutative) rings.
Can one find a bijection between subgroups H C G and R-subalgebras U C S?
Certainly this problem is not well posed if we admit all subalgebras. (Already for
R = 7 and |G| = 2, the trivial G-extension $ = ZxZ has infinitely many subalge-
bras.) The correct condition to impose on subalgebras is separability, an important
concept in itself. One may found the whole theory on this concept, which we
avoided for the sake of simplicity; we shall use separable algebras practically only
in Chapter 0, and as little as possible. Let us just recall the definition and refer
the interested reader to DeMeyer—-Ingraham (1971). We remind the reader that all
rings are supposed commutative.
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Definition. An R-algebra S is called separable if S is projective as a module over
S®,S (the structure is (s®1)y = syr for y € S, s®r € S®S5). If one admits non-
commutative algebras S, one has to take S® S°PP in the place of S®S.

Example. If R C S is a field extension of finite degree, then S is a separable R-al-
gebra iff the extension S/R is separable in the usual sense.

Galois extensions are always separable; more precisely, there is the following
extension to Theorem 1.6:

Theorem 2.1. Let S/R be an extension of rings, G a finite subgroup of Aut(S/R)
such that S¢ = R. Then the following are equivalent:

(i) S/R is G-Galois

(ii) S is separable over R, and for each nonzero idempotent e € S and any o, 1
€ G with 6 + 1, there exists y € S with e-o(y) + e'1(y). (Note that the last con-
dition is vacuously true if S has no idempotents beside 0 and 1.)

Proof. See Chase-Harrison-Rosenberg (1965), Thm. 1.3. The last condition in (i) is
abbreviated to "if o + 1, then ¢ and t are strongly distinct” in loc.cit.

To keep matters simple, let us assume from now on that S is connected, i.e. S
has no idempotents besides 0 and 1. The first part of the Main Theorem runs as
follows:

Theorem 2.2. [ Chase-Harrison-Rosenberg (1965)] Let S/R be a G-Galois extension,
H C G a subgroup, and let U = S" be the subalgebra of H-invariant elements. Then:

(i) U is separable over R

(ii) S is, in the canonical way, an H-Galois extension of U

(iii) H is the group of all 6 € G which leave U pointwise fixed

(iv) If H is a normal subgroup of G, then U is, in the canonical way, a G/H-
Galois extension of R.

Proof. We include most of the proof, in order to give the reader a better feeling
for the theory. Our argument is mainly the original one (loc.cit.); the changes re-
flect personal tastes and do not claim to be simplifications. Parts of the proof can
be understood without any knowledge about separable algebras.

(ii): Choose x,,...x, . y,....y, € S as in (ii') (proof of 1.6). Then, a fortiori, 2, x,(y,)
= ‘So.id for all 6 € H. The formula S¥ = U holds by definition. Hence S/U is
H-Galois by Thm. 1.6.

(i): By (ii) and Thm. 1.6 (iii), S is projective over U, hence S®,§ is projective over
U®, U. Recalling the definition of separable algebras, we see from Thm. 2.1 that
S is projective over S®, S. Hence, by an easy argument, § is projective over U®, U.
But U is a direct summand of S (as a U-module, and hence as a U® U-module),
by (ii) and Lemma 1.10 c). Hence U is projective over U®, U, q.e.d.
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(iii): We reproduce the direct argument of Chase, Harrison, and Rosenberg. Let
H' = {oeG|o fixes U pointwise}. Then H ¢ H' and SH = SH = U. Applying (ii)
and the definition of Galois extension to U and both of H, H', we obtain that
S®,S is simultaneously isomorphic to S'#’ and to $‘#”, which forces |H| = |H'|,
and hence H = H'.

(iv): See loc.cit. p.23. Another approach: Reduce by faithfully flat descent to the
case § = R'® and check directly that S¥ is canonically isomorphic to $‘6¢/H) By
the way: It is not difficult to prove also (ii) by this method.

The converse of this theorem reads as follows for connected ground rings R.
Warning: for nonconnected R the statement is more involved, see Chase, Harrison,
and Rosenberg (1965).

Theorem 2.3. Let R, S, and G be as in 2.2; let U C S be a separable R-subalgebra.
Then there is a subgroup H of G with U= S¥, and H is of necessity the group of all
oeG fixing U pointwise.

For the proof, we refer to loc.cit. (The theory of separability is used in an essen-
tial way.)

§3 Functoriality, and the Harrison product

In this section we summarize the paper of Harrison (1965). Several proofs are
omitted.

We have already seen in §1 that any homomorphism f: R - T of commutative
rings induces a functor "base extension” from the category GAL(R,G) of G-Galois
extensions of R to the category GAL(S,G). We now consider the second argument
with the aim of establishing functoriality in G, too. For motivation, consider a finite
group G and a factor group G/N. Then in the classical case there is just one way
to associate a G/N-Galois extension with a given G-Galois extension L/K: just
take LN /K. This works for rings just as well, by Thm. 2.2. It is important, however,
to allow general group homomorphisms n: G - H. Before giving the construction,
let us briefly mention the case where 7 is the inclusion of G in H. This case has
no counterpart in classical Galois theory; it will turn out that in this case the
map n*: GAL(R,G) > GAL(R,H) is given by a sort of induction process, as in repre-
sentation theory, and even if S/R is a G-Galois field extension, n*(S/R) is never
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a field unless G = H. Extreme example: G = e, and S is the(!) G-Galois extension
R of R. Then n*R will turn out to be the trivial H-extension of R. Now we present
the general result.

Theorem 3.1. a) Let R be a commutative ring R, n: G > H a homomorphism of finite

groups. Then there is a canonical functor n*: GAL(R,G) > GAL(R,H). If n happens

to be a canonical surjection G - G/N, then n*(S) = SN as in the above discussion.
(For the construction of n*, see the proof of this theorem.)

b) The prescription " —> 1*" preserves composition up to canonical isomorphism.
In other words: If we let H(R,G) be the set of isomorphism classes of G-Galois exten-
sions of R, then H(R,G) is again functorial in G, and the prescription "n +—> H(R,m)"
now preserves composition.

Definition. The set H(R,G) just defined is also called the Harrison set of R and G.
Proof of Thm. 3.1. We do a) and b) simultaneously. First we define n*. Let S €
GAL(R,G). We set

n*S = Map, (H,S) ( ={x: H~> SlVge G, heH: x(n(g)h) = g(x(h))}.)

The H-action on n*S is given by (A'*x)(h) = x(h-h') for x € Map, (H,S), h,h'eH.
The R-algebra structure is defined "component-wise”, i.e. by the inclusion of
Map, (H,S) in Map(H,S) = S'#)_ (It is immediate that Map, (H,S) is indeed a sub-
algebra.)

One sees easily that n* is a functor from GAL(R,G) in the category of R-alge-
bras with action of H. It remains to establish:

(i) If ¢: H - J is another group homomorphism, then we have a natural iso-
morphism Lp*(n'S) = (pn)*s;
(ii) ©*S/R is, with the given H-action, indeed an H-Galois extension.

We do (i) first, by exhibiting natural bijections

Mapq)(.l, Map, (H,S)) é:ﬁ Mapqm(.l, S).

(It is left to the reader to verify that « and B are J-equivariant R-algebra homo-
morphisms.) Let a(y) = y(-)(e, ) for y in the left hand side, i.e. a(y)(j) = y(j)(e,)
for jeJ. Let B(z)(j)(h) = z(¢(h)j) for z in the right hand side, he H, jeJ.

We check a is well-defined, i.e. aly)e Mapqm(J,S): Let jeJ, geG. We calculate:
aly)(¢n(g)-j)

y(gm(g)-j)e,,)
(m(@)*y()(e,)  (since yeMapy,...)
y(j)e,m(g)) (def. of H-action on Map,(H,S))

I

g(y(j)e,)) (since y(j)eMap,...)
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= g (aly)(})), q.e.d.

Bx is the identity: Let y € Map¢(l.Map"(H.S)). jeJ, heH. Then (Ba(»))(j)(h) =
a(y)((h)j) = y(§(h) j)e, ) = (h*y()))(e,) (since y € Mapy...), and the last expression
equals y(j)(h), q.e.d.

af is the identity: Let z € Mapqm(J,S), jeJ. Then (aB(2))(j) = B(2)(j)(e,) =
z(dle,)j) = z(j), q.e.d. This completes the proof of (i).

(ii): We will give one argument for the general case, and another for the spe-
cial case that H is abelian.

Note first that 7% commutes with faithfully flat base change, i.e. for any faith-
fully flat R-algebra T and any S in GAL(R,G), there is a canonical H-equivariant
isomorphism 1*(T® §) = Tet*S. By faithfully flat descent, it thus suffices to find
such a T with n*(T®S) an H-Galois extension of T. Taking T = S and changing
notation, we are reduced to proving: m* of the trivial G-extension RS’ is an
H-Galois extension of R. Let u: {e} = G, ': {e} > H be the obvious maps. One
checks quite easily: 1*R is the trivial G-extension R'®’. Since mt = (', we obtain:

*(RY) « n**R = ()*R  (by ()
- RH)

and we already know that this is indeed an H-Galois extension, q.e.d.

The following nice argument for H abelian is due to Harrison. We factor m as
m =38y, with y = (idG,eH): G- GxH, and § = (n,idH): GxH - H. Then v is a split
monomorphism, and § is onto. It is sufficient to show (ii) for vy, and for §, taking
into account (i). For m = v, one sees directly that n*$ = Se, R™) with the obvious
action of Gx H, and one can check that this is a Gx H-Galois extension. For m = §,
i.e. T onto, one calculates from the definition that $*S = SKer(S), which is indeed
a Galois extension with group Im(§) by Thm. 2.2.

We now present Harrison's construction which makes the set H(R,G) into an
abelian group if G is a finite abelian group. This will then be called the Harrison
group of R and G. (Recall that H(R,G) = GAL(R,G)/=). We use without further
comment the following easy fact: If S, T € GAL(R,G), then $®,T with the natural
action of GxG, is a GxG-Galois extension of R. Let G be finite abelian, t: {e} > G
be the inclusion of the trivial group in G, u: GXG - G the multiplication (a homo-
morphism!), and j: G > G the map g — g~ ! (again, a homomorphism).

Definition. The Harrison product ST of S, T € GAL(R,G) is defined to be

ST = p*(S®,T) € GAL(R,G).

By functoriality, the Harrison product [S:T] of two isomorphism classes [S], [T]
€ H(R,G) is a well-defined element of H(R,G). We shall often abuse notation and
write S € H(R,G) etc.



