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Preface

This volume contains mainly a collection of the invited lectures which were given
during a conference on “‘Fundamentals of Numerical Computation™, held in June,
5—28, 1979, on the occasion of the centennial of the Technical University of Berlin.
About hundred scientists from several countries attended this conference.

A preceding meeting on ““Fundamentals of Computer-Arithmetic™™ was held in
August, 1975, at the “*Mathematisches Forschungsinstitut Oberwolfach™. The
lectures of this conference have been published as Supplementum 1 of Computing
(Editors R. Albrecht, U. Kulisch).

After a period of four years of active research the purpose of the Berlin-Conference
was to give a broad survey of the present status of the closely connected topics
Interval Analysis, Mathematical Foundation of Computer Arithmetic, Rounding
Error Analysis and Stability of Numerical Algorithms and to give prospects of
future activities in these fields. Besides the invited lectures 35 short com-
munications, each of 20 minutes length, were given.

We gratefully acknowledge the support of the President of the Technical University
and of his Aussenreferat as well as of the Department of Mathematics. Besides these
institutions financial support was given by AEG-Telefunken, Berlin, Allianz
Lebensversicherungs A.G., Stuttgart, CDC, Hamburg/Berlin, DATA 100.
Miinchen, Gesellschaft von Freunden der TU Berlin e.V., Berlin and Siemens AG.,
Berlin. Finally we express our thanks to Mrs. G. Froehlich and Mrs. B. Trajanovic,
who managed the paper work before, during and after the conference.

Berlin, February 1980 G. Alefeld and R. D. Grigorieff
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On Methods for the Construction of the Boundaries of Sets of Solutions
for Differential Equations or Finite-Dimensional Approximations with
Input Sets*

E. Adams, Karlsruhe

Abstract

Collections of linear or nonlinear operator equations Au = f are considered which may represent (1)
differential or integral equations or (ii) finite-dimensional approximations. Input sets of coefficients @ or
data fare admitted. The envelope of the set of solutions is to be constructed where this boundary refers (1)
to the range of values of the solutions or (ii) to a finite-dimensional space. The construction employs
either topological boundary mapping or truncated Taylor expansions. Estimates of the local procedural
errors are due to suitable a priori sets and interval mathematics. The relation between local and global
error estimates is due to boundary mapping or an auxiliary inverse-monotone operator B. The operator
Bis constructed for the case of arbitrary linear ordinary differential equations with boundary or initial
conditions, provided the admitted A4 satisfy a mild condition.

1. Outline of the Problem

Collections of operator equations
Au=f (1.1)

are considered which may represent (i) differential or integral equations with the
usual side conditions or (ii) finite-dimensional approximations. The following types
of input sets are admitted in (1.1): (@) sets S, of data fand (b) sets S, of coefficients a
where “‘coefficient” refers to any input in A. An envelope ¢S, of the set of solutions
is to be approximated. The envelopes ¢S,, ¢S;. and ¢S, either (/) refer to sets in
finite-dimensional spaces if this is true for (1.1) or (if) represent the upper and the
lower envelopes of the ranges of the respective functions in (1.1). The existence of
the solution of (1.1) will not be discussed.

The consideration of input sets S, or S, is motivated as follows:
Case (I) (Applied Mathematics). 4 = A, and /= f, are fixed:

(/) The execution of numerical methods requires that the solution uy of Agu = f; is
well-conditioned with respect to neighboring coefficients and data:

(2) if a neighboring problem 4,w = f, can be solved, ¢S, is of interest if S, contains
both « and g, and if S, contains both fand f,:

(3) sets may appear in the analysis due to error estimates.
* This paper is dedicated to Prof. Dr. H. Gortler on the occasion of his 70th birthday. — The research
was supported by the NATO Senior Fellowship Award SA.5-2-03B(112)961(78)MDL.



2 E. Adams

Case (II) (Applications of Mathematics). S, and S, are prescribed:

(4) The range of the solutions is to be bracketed as, e.g., for the case of a collection
of loads in problems in civil engineering;

(5) mathematical models of real world problems have imprecisely known input.

With the possible exception of (4), input sets are usually “small”, e.g., an input
interval possesses a small span. The motivations (1) — (4) generally admit input sets
with fixed deterministic envelopes; stochastic envelopes in the case of (5) will not be
discussed here.

2. Ordinary Linear Initial Value Problems with Initial Sets
The solution of the linear ordinary ivp (initial value problem)
u' — A(tyu = g(t) for teJ:=(0,T], u0)eR",
u:J >R A:J—- LR, A,geC() 2.1
can be represented as follows [11, p. 139—141]:

t

u(t) = X(1) |:u(0) + j (X(s)) 'g(s)ds] for teJ, (2.2)

0
where X is the fundamental matrix of ¥’ — Au = 0. A compact initial set £(0) = R"
is admitted. Then, (2.2) represents a bijective affine mapping with parameter 7 of
E(0) onto E(?), the set of solutions at any ¢ € J, such that ¢ £(0) is mapped onto ¢ E(1).
For the case of (2.1), this Boundary Mapping was recognized independently in 1977
by K. Nickel [18] and R. Lohner [14], [15].

The theory of differential inequalities ([ 13] or [23]) may be employed to construct
an interval /(z) = [u(t), 4(t)] = R" such that E£(0) = 1(0). Provided the off-diagonal
elements of A4 are nonnegative, the ivp are inverse-monotone, i.e.,

U — Au=>w' — Aw fortrel and u(0) = w(0) = u(r) = w(r) for red.
(2.3)

Then, u,u such that u < u < u for teJ and every solution of (2.1) with E(0) are
solutions of ' — Au =u' — Au=gonJand u <u <ufort=0andevery u(0)e
E(0). If A does not possess this property, then

n

ﬁ; = a,~,-L7,- — Max Z ajju; = _C],'(I)

ue i) ,J: for reJ, ui(0) < u;(0) < %;(0), 2.4)
. & i=1(1)n. '
u; — a;u; — Min Z ajju; = g{1)
uelln) j=1
i

Due to Max or Min, I(t) := [u(t), u(1)] generally exceeds the set E(t).
Example 2.1. If

0 1
E©0) = [0.9,1.1] x [— 0.1,0.1] = R* and A=< | 0>,g=0, (2.5)
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then (1) — u;(t) = 0.2 €' for i = 1 or 2 even though E(¢) is uniformly bounded with
respect to every teJ for T — 0.

Since 7 or I at t completely determine 7 or 7 at 1 + dr, (2.3) and (2.4) are interval
methods. The overestimates due to (2.4) make it desirable to look for a constructive
execution of boundary mapping in the case of (2.1).

Example 2.2. Theivp (2.1),(2.5)is reconsidered. The superscript k = 1(1)4 denotes
the four corners of the set £(0). By use of v : = u; and w : = u, and the trapezoidal
rule, the representation of the ivp by Volterra integral equations can be discretized
as follows:

1*‘1’21 = L“" + (h/2)[w“" + wﬂ"j J = (P /12)w" (o)
for j=0(1)N — 1, h = T/N, a;e [t 1;:1],

K =
Wi, = (2.6)

Since " +v=w"+w=0, a suitably selected a priori interval I“" =
79 x W | = R* may be employed to estimate the remainder term’ m the
truncated Taylor expansion

w(k)(,) = w(jk) _ (, _ tj)v;."’ _ %(t ) “(k) _ 6“ % (A)(/g )E ['V‘Jkil

El“
forte[lj,tj+1], ﬁje[fj.fj+]]. (27)

of the function w®" where ! denotes a condition. If the corresponding condition
v®(r) & V‘ , for te[t;,t;+,] is also satisfied, w"(x;) may be replaced by W“"l in
(2.6). Then (2.6) is a linear algebraic interval system with a fixed matrix whose
solution is a parallelogram, P"‘ll, which can be enclosed by the smallest interval
1! ,. The four intervals 1‘1'21 with k = 1(1)4 then can be enclosed by the smallest
quadrllateral E(t,+ 1) which is an outer approximation of E(¢;. ,) such that the four
corners of E(t}+ 1) are the starting vectors for the continuation of the construction.
Due to the numerical results by E. Gerdon (Karlsruhe), ¢E(t;) and ¢E(1;) deviate by
less than 1.5(10®)¢; for #;€(0,20n] where 4 = 10~ ? was used and the CPU-time
was 56 sec on the UNIVAC 1108 at the University of Karlsruhe.

Remark. As compared with Example 2.1, here the “interval-coarsening’ is
restricted to the small local procedural error and its transfer to the corresponding
global error due to the outer approximation.

Remark. By use of the domain invariance theorem of topology ([12] or [19]),
boundary mapping holds for nonlinear ordinary ivp provided a uniqueness
condition is satisfied, e.g., [12] or [19]. Boundary mapping also holds for suitable
linear operators in Banach spaces with infinite dimensions, e.g., [8].

3. Ordinary Linear Boundary Value Problems with Sets of Data and Coefficients

The following collection of linear ordinary Sturm-Liouville bvp (boundary value
problem) is considered:
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Pu:=u"—a(x)u= — g(x) for xel:=(0,1),
Au=f<{Ru:=u=0 forxedl; ueU:=C*I);y:=aorg, (3.1)
VyeS,:=[y.71n C{).
It is assumed that there exists @ € S, such that Green’s function G, is explicitly

known for the operator 4, pertaining to a,. Each individual admitted bvp can be
represented equivalently by

1

1
Bu := u(x) — J K(x, Hu(&)dé = — J Go(x,)g(E) dé = g*(x) for xel,

0 0
VyeS,, K(x,&):= Golx, E)[a() — an(&)] for (x,&)el x I. (3.2)
Auxiliary kernels are introduced:
K'(x,&):= K(x,&) if K(x,¢) = 0 locally and K™ (x, &) = 0 otherwise,
K (x,8):=K(x,&) — K'(x,&) onlxI. (3.3)
The values of the set of solutions of Bu = g* can be bracketed by use of an interval
[u,u](x) for xe I which solves the following interval extension of Bu = g*

1

1 .
[u,u](x) = J (K K]+ [K" K™D OLu, u)(&) dé = J [Gog. Gog ] d<

0 0

for xel, where K~ := Min K~ and Gog : = Min Gg locally at every
aes, ges,

(x,&)el x I, etc. (3.4)

Generally, the relation between the input @, g and the corresponding solution u is
lost as Bu = g* is replaced by (3.4). By use of the rule of interval multiplication,
rearrangement of terms in (3.4) yields the “extended operator equation” with

) (Max K*")u if 4 = 0 locally
Bi:=u— o< S o
o| \ Min K" if z < 0 locally

aes,
Max K™ |(— w) if u = 0 locally
+ ue-S‘, B . dé,
IMin K™ |(— u) if u < 0 locally
aeS,
i (Mip K™)(— w) if u > 0 locally
:=(—y)—j o :
0 (Max K™ )(— w) if u < 0 locally
a€es,
IMin K™ |z if u > 0 locally
+ aes, o dé,
IMax K~ |u if u < 0 locally
aeS,

for x el with 4(x):= (#(x), — u(x)) and @: 7 — R2. (3.5)
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The execution of the operators Max or Min yields (1) Min, ¢ K* = Max,_g
K~ =0 if ap(x) e (a(x), a(x)) for every xeI and (2) discontirluous functions a (&)

whose values for any fixed xeT are either a(¢) or a(é); B is nonlinear unless
a= a= dy.

In order to show that B is inverse-monotone with respect to #, it is required that
there exists a test element ¢ = (v, v) with ve C(I) and v(x) > 0 on 7 such that B > 0
on 1. This inequality is trivially satisfied by the choice of v(x) = 1 for xe I provided
there holds

1

[(Max K*) + [Min K~ [)(x,&)dé > 1 — (K], + [[K|l.) > 0. (3.6)

0 a€s, aes,

Theorem 3.1. The operator B is inverse-monotone with respect to u if there exists a
test element ¢ C(I) such that ¢ > 0 and Bt > 0 on I.

The proof as presented in [2] follows the one in [1].

Theorem 3.2. The system of Fredholm integral equations

1 1
o gdé if Go = 0 locally
B Max(— Gog)déc = — | G

‘e f L gES,,X( og) J:. ¢ {q d¢ if G, <0 Iocall}}

1
= J‘ GO‘;X(&) d&.a
C

)

: U (GdE if Go = 0 locally
1= — | Min (- Gog)dé = J G(,{"“;'/ 0 ‘}
0 g€, ( gd¢ if Go < 0 locally

1
0

(1) possesses a unique solution u,ie C(I) such that
u(x) < u(x) < w(x) for xel and every solution ue C(I) of (3.2). (3.8)

provided (3.6) is satisfied; (2) u, i are sharp bounds if (i)a = a = a, or (ii) Gy = 0 on
IxTand a=a,on 1.

Proof. (1) This follows from Theorem 3.1 and the uniform convergence of the
Neumann sequence of successive approximations; (2) this follows from a theorem
by Arzela (e.g., [9, p. 772]) since the discontinuous functions g,(¢) with values g(¢&)
or (&) for any fixed xel can be approximated with arbitrary accuracy by a
sequence of functions g"'(¢)e C(1). e.g., by use of the L,-norm. O

For every collection (3.1) with ||Go|| . |la — 4l|.. sufficiently small, (3.6) is satisfied;
then, an interval [u,#](x) can be constructed by use of the inverse-monotone
extended operator B. Hansen (e.g., [3. p. 232]) recognized the advantage of
premultiplying a system of linear algebraic interval equations, Au = f, by A, .

Remark. The ivp (2.1) can be treated analogously.

Example 3.1. The operator equation Au = f'in (3.1) is reconsidered with ¢ and ¢
fixed. It is assumed that there exists a neighboring coefficient a, such that (i)
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Green’s function is (explicitly) known for (3.1) with a, instead of a and (ii) (3.6) is

satisfied for functions a, @ such that a, a, € [ @, @] on I. Cubic Spline functions (e.g.,
[22, p. 81))

Xj+1 — X X — X;
u,,:=usj:=uj T +uj+1 h

& 2 x1+|—~‘€3 (-‘C—X;)_ 2
Mo [(ﬁ) () < [ M-

for xe[x;, Xj+1], xj=Jh, j=0n+ 1. h=(n+1)"", x, =0, (3.9)

with any fixed ne N, are employed to construct an approximate solution of (3.1) for
the case of fixed @ and g. The composite Spline function u,e C*(7) yields a residual
r:= Au, — f. A correction z is defined by use of 4z = — rsuch that A[u, + z] = f.
Analogous to (3.2) and (3.5), the equation 4, 'Az = A, 'r =:r* gives rise to
B? = f. This yields the quantitative error estimates ze[z,Z] and

u(x) e [u(x) + z(x), uy(x) + Z(x)] for xel. (3.10)

The standard error estimate of linear discrete analogies involves a constant ce R*
which usually is not known quantitatively since ¢ majorizes the norm of the inverse
matrices for every neN, [21, p. 9].

Remark. Linear elliptic bvp can be treated analogously by use of the Spline
functions developed in [20] provided a Green’s function G, is known.

4. Linear Ordinary Initial Value Problems with Sets of Coefficients

With reference to procedural or rounding errors, a complete conditioning (or
sensitivity) analysis of a mathematical model requires a quantitative comparison of
a “‘basic solution” u(x, y,) with neighboring solutions u(x, y) where x stands for the
independent variables and 7y, y, denote every data and coefficient. Interval
mathematics seems to suggest that |lu(x,y) — u(x, y0)||. 1s majorized for y = y or for
3 = 7 provided ye[7,7]. This generally is not true unless the problem is inverse-
monotone and y stands for data only. The subsequent discussion of this topic
cannot employ boundary mapping since each admitted data g defines a separate
operator A of the ivp to be discussed.

Example 4.1. The following collection of ivp is considered:
u' 4+ u=g(t) forred:=(0,T], u(0)= uy, u'(0) = u; with fixed
uo.uleR,geSg::[g.g]r\C(]). 4.1)

For any fixed forcing function g€ S,, the solution of (4.1) is as follows:

1

u(t) = o(r) + J‘ G(1,5)g(s) ds

0
where G : = (sin)(cos s) — (cos 7)(sin s) = sin(t — s),

0= UyCOS! + u, sint. (4.2)
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Analogous to (3.7), the upper envelope of the values of the set of solutions of (4.1) is
given by

u(t) = o(t) + | Max (G(t, 5)g(s))ds = a(t) + J G(t,5)g(s)ds for tel,

0 ges§, 0

g(s) if G(¢,s) = 0 locall for 1eJ fixed and
gils) 1= { ! (4.3)

g(s) if G(t,5) < 0 locally

every se[0, ¢].

The lower envelope u is determined correspondingly; g, may be interpreted as a
control function whose choice majorizes the interval [ u, #](¢). For the special choice
of 6:= —g=geR", obviously, =0 + Sand u = ¢ — S where S:= 3 [41G| ds.
This yields

u(mn) = a(mn) + 2[dm] for t = mn with every me N. (4.4)
For comparison, (4.1) is considered for the “‘resonance case” of g = dsinzt:
u(mmn) = o(mn) + (7/2)[6(— 1)""'m] for t = mn with every meN. (4.5)

Therefore, (i) the operator Max in (4.3) causes the selection of a forcing function g
with the “‘resonance frequency”, 1, (ii) the interval [u, #](¢) is almost covered by
solutions of physical relevance, (iii) the interval [ u, ](7) is determined by functions
gi(s)¢ S, such that each g, can be approximated with arbitrary accuracy by a
sequence of functions g{"(s) € S, whose values are nor given by those of g and g only.
Even if e R* is arbitrarily small, (4.1) is unstable for 7 — oo and ill-conditioned
for any sufficiently large Te R*. The unbounded increase of |u| and |u| can be
avoided if there is a sufficiently large damping constant be R* in the altered
equation ¥’ + bu' + u = g for teJ.

As t — o0, a corresponding unbounded increase of u(7) — u(t) occurs in the case of
U +altyu=0 fortet:=(0,T]; u0),u'(0)eR fixed,
aeS,:=[a,a]ln C(J). (4.6)

This “‘parameter-resonance’ is well known in mechanics, e.g., [7, p. 225].

5. Partial Differential Equations with Input Sets

The discussions of ordinary (linear) ivp apply immediately to (linear) parabolic or
hyperbolic pde with the usual side conditions and input sets, provided approximate
solutions are constructed by use of the longitudinal line method, e.g., [23]. Elliptic
pde with the usual side conditions and input sets can be treated approximately by
use of discrete analogies, compare Section 6 and Example 3.1.

6. On Truncated Taylor Expansions for the Approximate Solution of Problems with
Sets of Constant Input Properties

The collection of operator equations Au = fin (1.1)is considered. In many cases, an
algorithm for the exact or the approximate solution of (1.1) employs or yields a
function from one finite-dimensional space into some other such space; e.g., the
solution of a discrete analogy is such a function which depends on constant input
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parameters. Due to the motivations listed in Sect. 1, these real numbers may take
values in certain input sets. The range of such a function then is to be determined
precisely or to be approximated with sufficient accuracy. In many cases, interval
methods are non-existent for these purposes or they yield unacceptable over-
estimates.

This will be achieved by use of truncated Taylor expansions of the unknown
function F representing the solution in terms of every constant input parameter
(and the independent variables): Fis assumed to be sufficiently smooth. Because of
Sect. 7. first an interval polynomial will be treated.

Example 6.1. The following collection of functions F: C — C is considered:
F(zia.b):=z" +2az+ b =0, zeC, ac[09,1.1], he[1.9.2.1]. (6.1)

Here, only the root z = — a + i\/}T:u2 will be discussed further. For the special
choice of ay = 1 and by = 2, theroot z : = z(ap, by) = — | + iis obtained from the
nonlinear equation (6.1). Byuseof z = x + iy.0 = 1,7 = i. theroot z(a,h) of F=0

defines the functions F(a.b;o.7):= F(x(a.b) + iv(a.b):a.b) and Fla,b):=
Fla,b;a.7)where F: D — Rwith D:= [09.1.17 x [1.9,2.1] = R?and Fla.b) = 0.
By use of recombining real quantities into complex quantities, differentiation of the
last identity yields the following linear decoupled equations for the partial
derivatives of = with respect to a or b:

oF oz —Zz — 2o
—=0=>rvi=—=—=1py = p———

ca ca Z+4+a Zo + aop

oF dz — 1 — 1 i

= =0=w:= o = Vg = ———— _ o=

ch ch 2(: +a) 2(3() + ap) 2
0 F 5 Pz —2v—v? 62)
——=0=a:= _ = e B
da* oa* z+a

The derivatives of z of any order exist if =+ a # 0. A linear truncated Taylor
expansion of z(a, b) with respect to (a. by) 1s introduced:

Zi=zo+ (a—ag)to + (b —bo)wo = —a+i[l —(a—ay) + (b — by)2].
(6.3)
By use of the a priori set
S.:=[—-12,-0.8]+i[08,1.1] with z e S., (6.4)

the following estimates are obtained: |[0?z/0a?| < 10.3, |¢%z/cach| < 2.36,
|02z/Ch?| < 0.49, and |R,| < 0.1551/2 where R, denotes the remainder term of the
truncated expansion (6.3). The following table compares results for Z and the exact

root z= —a+ iy b—a*:
Table |
a b 4 z a b 4 z
1.1 2.1 — 1.1 +095 — 1.1+ 0.942i 0.9 2.1 - 0.9 + 1.15/ — 0.9 + 1.100/
1.1 1.9 — 1.1 +085% — 1.1+ 0.830/ 0.9 1.9 — 09+ 1.05% —0.9+ 1.000;
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In each case, |Z — z|] < 0.1551/2. These results and the monotonicity of Z(a,b)
confirm that Ze S. is valid for every admitted (a.b)e R?.

Remarks. 1f the intervals for @ and b admit double roots z(a, b), (6.3) is still valid if
(ao, by) is selected so as to ensure that z(ag, bgy) + ao # 0. Since v, w,a,... are
determined from decoupled (linear) equations, interval polynomials of any degree
may be treated in this way. The books by Alefeld and Herzberger [3] and by Moore
[16] on interval mathematics do not discuss the subject of interval polynomials.

The following example treats truncated Taylor expansions for a problem where an
input set appears only due to embedding the operator equation into a collection of
such equations.

Example 6.2. A nonlinear system in R" is considered:
F(u) = 0 with F: D —> R" and D = R"; F possesses a continuous Frechet
derivative DF(u) on D such that (DF(u)) ' exists. (6.5)
This system is embedded in the following collection:
Fu)=b with he S, c R". (6.6)

Itis assumed that this system possesses a real or complex root u(b) forevery b€ Sp. A
function F(b)A:= F(u(b)) — b is defined such that F: S, - R" and F(b) = 0, which
implies that 0F;/db; = 0for i, j = 1(1)n. The last identities yield the matrix (du;/cb;) €
L(R"). Due to

(CF/Cu)(Cuy/Chj) = = (Cuy/Cb;) = (DF(u)) . (6.7)

where 7is the identity matrix. By use of a superscript & to be explained subsequently,
a linear truncated Taylor expansion of u(h) at /*' = F(u'*") is introduced, which
employs a free vector F** e R":

uk D = 4™ 4 (uy/ob)(B* T — BW)  with k + 1eN and b% = F(u'®).  (6.8)

If 5%+ = 0, this is the classical Newton method, whose divergence can be avoided

ifd* "= |p** 1 — p®|is sufficiently small for i = 1(1)n. A check on the choice of
the individual 5* """ is possible by use of the u** " as following from (6.8). and
[P — p* D for j.m = 1(1)n where b** ' = F(u'* " ). For the special choice of
n =2 and

Fi:=uju; — 0.5 and Fy:=uus — 1.0, (6.9)
the classical Newton method diverges if u{”) = 2 for i = | and 2. The choice of

—— {h‘,"‘ — 01 if B> 0.2,
oo otherwise,

- bP —0.01 if ¥ = 0.1,
h‘;*“:z{ : il (6.10)

0 otherwise,

yielded a slow linear convergence (of 307 iteration cycles) and, subsequently, a
rapid quadratic convergence of only 3 iteration cycles when * * " = 0 was reached
for both i = 1 and i = 2. The solution, thus approximated, is u; = 2 and u, = 0.5.

2 Computing. Suppl. 2



10 E. Adams

Remark. Modified Newton methods (e.g., [22, p. 208]) usually employ a
parameter /,€R in

Wk = % S (DFu™®)) "Fu'™®)  with k + 1eN. (6.11)

Even though convergence can be enforced under rather general conditions, the
determination of the 4, is rather involved.

Next, Au = fin (1.1) is assumed to represent a collection of systems of linear
algebraic equations with fe R" fixed and a set of matrices 4 € L(R"); (1.1) then may
be the discrete analogy of a differential equation with side conditions and a set of
coefficients. The smallest interval enclosing the set of solutions, S, of Au = f'can be
determined if every admitted matrix is an M-matrix, e.g., [ 5, p. 156]. This condition

is not required in the following example, where ¢S, is approximated for the case of
n=2.

Example 6.3. The collection of systems

Aii = = o<»<”“ “”><”‘> = (:l> with a;; €[ a;;. a;] and fe R? fixed

dyy dzz/) \Up 2

(6.12)

is considered A special matrix 4, = (a ‘”') is selected from the admitted set such that
A, ! exists. The subsequent results are optlmd] with respect to the choice of A4 if
there holds

0
a'?

ij = aij + %((7,1,- = {l,‘j) for [.[ =1 or 2. (6]3)

An auxiliary vector f:=(ay;.a2.a2.02:)€S,:=[]7,_, [aij.a;;] = R* is in-
troduced. A function F(u, 4):= Au — fis defined. Since a sufficient condition for
the existence of one and only one solution u(f3) is implied in the following, it may be
assumed that a unique solution u(ff) exists for every feS;. The function
F(B):= F(u(B), A(p)) has the properties F: S, - R? and F(ff) = 0. The following
notations are introduced:

. Ou (B : y
o () : = (if“l) and  wi I : = Tudf) k.ij.o,t=1or2. (6.14)
ca;;j ((1,,((1,,,

By use of differentiating the identity F(f§) = 0, four systems of linear algebraic
equations with the identical matrix 4(f) are obtained for the four vectors ¢/ e R
In these systems, f§ is now replaced by f,:= (a\’), ..., ay))e Sy. This defines the
special solution u(f,) = A4, 'fand the Taylor coefficients v{i"”’ € R* in the following
linear truncated Taylor expansion:

2 : — ui(Bo)
a(B) = u(Bo) + Y. (ay — a)§? where Agvy ! = 0 ,etc.,
ih,j=1
(6.15)

i.e., the existence of A, ' implies the existence of the v§;”. The validity of the
following matrix representation is implied by the Neumann series for 4~ '(f):
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Wp) = A '[f — BPu(Po)]  where A5 = A~ '(Bo)
and  B(f):= ((a; — a}")) € L(R?). (6.16)

Since /' — B(B)u(fo) = : I(B) = R*is an interval, 4, '1(f) is a parallelogram P — R?
such that (/) ¢/« ¢P due to (affine bijective) boundary mapping and (/i) ¢P is an
approximation of ¢S, where S, is the set of solutions of (6.12). The theory of the
Neumann series implies that the terms of the second order,

o

r:=% %Y (aj- u‘,.;”)(am — aMwiie( gy, (6.17)

i.jor=1

in an extension of the expansion (6.15), admit the following matrix-representation:
ry=A "(P)BHA " (S)Bfu(p). (6.18)

The 10 vectors w'™/*9 e R? in (6.17) are the solutions of 10 systems with the identical
matrix A(f). By use of (6.18), the remainder term, R,, of the linear truncated
expansion (6.15) can be estimated as follows by use of a suitably selected a priori set
S, c R*:

IR|l. < Max Max||I,]|, < [Max|B(B)|I 1y*[Max||ul|,] = :p,

BeS, ues, BeSg ues,
44 "Il

where y:= - D . if |4, Y], (@i — a? ,%1. 6.19
L fidg 'l i, — a0y, "o @ = @l (015)

Here, 7 is due to a well-known estimate in Numerical Analysis, e.g., [6, p. 65]. If the
condition denoted by ! is satisfied, then every admitted matrix is invertible,
compare (3.6). For ¢P to be a sufficiently accurate approximation of the set of
solutions, S,, of (6.12), p as defined in (6.19) should be very much smaller than a
characteristic geometric extension of P. The selected a priori set. S,, is sufficiently
large if 0S, is an outer approximation of dP whose distance exceeds p. This
construction has been applied to the following system:

A(e)u — plu = f with u= 1.5, fe S;:=[0.8,1.2] x [0.8,1.2] = R?,
&= (&1, 62,3, 84) €S, = R*,

—3—¢,—3+¢ 1 — &5, 1 3 .
A(a;):e<[ =% +al L %2 -szl) with |¢| < & for i = 1(1)4.
[—4—63, —4+e3] [2— 64,2+ 4]
(6.20)

The admitted matrices are not M-matrices; A(0) possesses (a) the eigenvalues — 2
and 1 and (b) the eigenvectors (1, 1) and (1, 4). The numerical results in Fig. 1 reveal
that the set of solutions possesses roughly the direction of the eigenvector (1,4)
since u = 1.5 is close to the eigenvalue 1. J. Steckelberg (Karlsruhe) has computed
the numerical results in Fig. 1 which hold for the two fixed choices of ¢ = 0.01 and
¢ = 0.05. The dashed parallelogram represents the set of solutions 4~ '(0)S,. The
solid quadrilateral encloses 3* = 81 parallelograms 4~ '(¢)S, with 81 different fixed
choices of e € S, such that |¢;| < & Therefore, the solid boundary of this quadrilateral
encloses the set of solutions, S,(£), with a high degree of approximation. The double
solid lines for the case of ¢ = 0.01 are due to an application of the estimate denoted

(=]
*
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2

- u2
=001 1

————u —f————— f i u
/ 1
-1 !

Fig. 1. The set of solutions for the collection (6.20) of systems of linear algebraic equations. The symbols
are explained subsequent to (6.20)

by 71n (6.19) to selected fixed vectors f€ S,. The linear truncated Taylor-expansion
(6.15) was employed separately for (/) the two choices of ¢ and (i) fixed choices of f €
¢Sy in a discretization of ¢S. The resulting parallelograms P(&, /) are enclosed by
the dots in Fig. 1 which define a quadrilateral ¢S;(¢). Due to (6.15), each P(e, f) is
determined by 4~ '(0) fand four vectors v{'' € R? which are the solutions of systems
with the identical matrix A4(0). Inspection of Fig. 1 reveals that dS1(¢) is a highly
accurate approximation of the envelope dS,(¢) of the set of solutions for both
£=0.01 and &£ = 0.05. The number p(&) in (6.19) was determined by use of an a
priori set S,(£) with the following properties: (i) S+(£) = S.(£) and (ii) the distance
of ¢S4(£) and &5,(¢) exceeds a chosen number d(z):

£=0.01: d0.01)=0.06 = p(0.01)=0.01619 < d(0.01).
£=0.05: d0.05) = 1.3266 = p(0.05) = 2.67 £ d(0.05), (6.21)

i.e., the chosen a priori set S,(0.05) is too small. By construction, an expansion of
each side of the dotted quadrilateral ¢S;(£) by the distance p(¢) yields an outer
approximation of the set of solutions, S,(£). For £ = 0.05, the estimate p > ||R,||,
exceeds considerably the distance between the solid quadrilateral and the dotted
dS7(2). Without a knowledge of the solid quadrilateral, a truncated Taylor



