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University of Washington

Abstract

MICROMECHANICAL STRESSES IN KONOLITHIC CERAMICS
AND CERAMIC COMPOSITE MATERIALS

by Zhuang Li
Chairperson of
the Supervisory Committee: Professor Richard C. Bradt
Department of Materials
Science and Engineering

Thermoelastic properties of the cubic and hexagonal
polytypes of SiC have been determined. The thermal
expansion, a, is highly temperature dependent, but only
slightly dependent on the crystallographic orientation,
while the elastic porperties are highly dependent on
crystal orientation, but not very temperature dependent.
However, the thermoelastic stress index, aE, 1is highly
dependent both on temperature and the crystallographic
orientation.

By developing a modification of the Eshelby method and
applying it in matrix form, the micromechanical stresses
and strain energy density within polycrystalline ceramics
and ceramic matrix composites have been determined. For
cubic polycrystalline ceramics the micromechanical stress
concentration and the strain energy density are related to
the elastic anisotropy of individual large grains within a

fine grain size microstructure. Those large grains are



ideal sites for fracture initiation, directly influencing
the strength of cubic polycrystalline ceramics.
Micromechanical stresses and strain energy densities
of non-cubic polycrystalline ceramics are not only
dependent on the elastic anisotropy, but also on the
thermal expansion anisotropy. Even without external
loading, internal stresses are generated during temperature
changes and may result in spontaneous microcracking.
Besides the thermoelastic anisotropy, the geometry of the
crystals or grains 1is also important and influences the
micromechanical stresses within polycrystalline ceramics.
Micromechanical stresses in SiC reinforced ceramic
matrix composites are often in the GPa range and may be
expected to influence the strength, fracture toughness and
the R-curve behavior. Four microstructural factors affect
these composite micromechanical stresses: (i) the thermal
expansion mismatch, Aa, which primarily influences the
magnitude and the distribution of the internal stresses,
(iid) the elastic modulus difference, AE, which strongly
affects the distribution of any externally applied loads,
(iii) the geometric shape of the reinforcing phase, (L/d),
which can either amplify or reduce the thermal and elastic
effects on the internal stresses, and (iv) the volume
fraction of the reinforcing phase, V,, which directly
affects the magnitudes of the stresses. To design a

optimal composite, those four factors must be considered.
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