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Preface

The burgeoning growth of instructional programs of a technical nature has
brought with it instructional problems of suitable curriculum materials. For those
students who are pursuing the two-year technical program, it has been found that
instructional material designed for four-year college engineering programs is not
suitable; nor, on the other hand, is conventional academic or vocational material.
Instead, those who are teaching such students have found that while great emphasis
must be placed on fundamental skills and concepts, there must also be emphasis on
the application of these fundamentals. Thus, both theory and practical application
are joined and the terminal objectives of technical training are satisfied.

As a result of much experience in teaching two-year technical students, and
after much experimentation, trial and error, this new approach to the presentation of
trigonometry has evolved.

TECHNICAL TRIGONOMETRY is intended to cover the specific portions of the
subject of trigonometry which pertain directly to practical applications. Thus the
content is directed toward solving problems normally encountered in trade and indus-
trial applications. It should be pointed out that in this respect, and in the manner in
which the content is cataloged, this text differs from other, more conventional trig-
onometry texts. It is this terminal approach which allows the principal concepts of
the subject to be explored from the practical view.

It should be recognized that the study of trigonometry will require a working
knowledge of algebra and geometry. As an introduction to the presentation of the
trigonometry content in this text, a brief review of algebra and geometry is given.
This review section merely points up some of the more pertinent content in algebra
and geometry that is applicable to the study of trigonometry. It is not intended as
sufficient coverage of such subjects.

A good foundation in mathematics cannot be laid by mere mastery of technique.
The uses to which this text will be put will be varied, and it would be impossible to
illustrate all such uses by specific examples. Nevertheless, the more immediate
applications of trigonometry to problems such as are encountered in electrical and
electronic work, tool design, hydraulics and pneumatics, are dealt with in specific
instructional units.

Besides the step-by-step development of the necessary principles required for
an understanding of basic techniques, and in addition to the varied applications men-
tioned above, the text provides drill material for mastery of basic skills. Thus, the
presentation follows a logical sequence: (1) presentation of the principle, (2) drill
for mastery of the basic skill, and (3) application of this skill to practical problems.

September 15, 1963 William G. Dickson,
Albany, New York " Editor
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From the vocational approach to the teaching of trigonometry, the authors feel
some explanation as to the past history of industrial mathematics is in order. After
many years of searching for a textbook that would present the vocational aspects of
the subject, little success was realized. The level of presentation of the contents in
many of the texts reviewed was above the level of the practical concept with little or no
practical application. Almost all trigonometry textbooks are reasonably standard in
that the theory is established. Therefore, that which remains to be done in preparing a
vocational-type trigonometry textbook is to govern the presentation of the already
standardized material.

The unusual format of this text is the result of considerable teaching and ex-
perimentation with classes at the technical level. The subject matter is presented
in the sequence which has been found desirable not only for the instructor, but for the
student. Since each local situation varies, however, adaptations to meet local re-
quirements are easily made because of the careful subject matter breakdown. The
instructor should feel at liberty to amplify the given material, or to omit those areas
not applicable to his specific needs.

Since the student enrolled in a technical program is mainly concerned with
learning a vocation, he should not be burdened with extremely difficult derivations:
in this presentation, only the rules of basic concepts are derived, and these deriva-
tions are explained in detail. He should, however, be advised of the subject matter
directly related to his field of interest.

Dennis H. Price
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INTRODUCTION

A SUMMARY OF MATHEMATICS HISTORY

Early mathematicians experienced many difficulties arising from a lack of paper,
pencils, chalk, erasers, standardized notation, and an adequate number system. The
abacus, a simple but effective computer consisting of rows of beads suspended on
strings in a wood frame, solved many of the early problems.  Not until Hindu symbols
came into use did the processes of arithmetic become simple enough for them to be
within the grasp of the nonprofessional. But it was only after the adoption of our
present system of numerical notation and standard symbols, that mathematics became
a truly universal language. In our study of mathematics we are indeed fortunate that
we have the necessary tools with which to bring about solutions to problems which only
a few short years ago were impossible to solve. In view of this, Table I and Table IL
are presented and give the common symbols used in much of today’s mathematics.

SYMBOL IDENTITY SYMBOL IDENTITY
X OR MULTIPLIED BY >> IS MUCH GREATER THAN
~ OR: DIVIDED BY << IS MUCH LESS THAN
+ POSITIVE, PLUS OR ADD > GREATER THAN OR
= EQUAL TO
NEGATIVE, MINUS OR
SUBTRACT < LESS THAN OR EQUAL
- TO
1 POSITIVE OR NEGATIVE
THEREFORE
e NEGATIVE OR POSITIVE
ANGLE
=OR:: | EQuUALS
INCREMENT OR
= IDENTITY DECREMENT
a1 IS APPROXIMATELY EQUA
- L 1 PERPENDICULAR TO
TO OR IS CONGRUENT TO
PARALLEL TO
== DOES NOT EQUAL “
Inl ABSOLUTE VALUE
> IS GREATER THAN OF n.
UPPER | LOWER UPPER | LOWER
CASE | CASE LDE NITITY CASE | CASE IDENTITY
A a ALPHA N v NU
B B BETA = 13 X1
r ¥ GAMMA (€] 0 OMICRON
A ) DELTA In PI
E € EPSILON P p RHO
Z e ZETA b3 o SIGMA
H n ETA T T TAU
(¢] [’} THETE T v UPSILON
I . I0TA P ¢ PHI
K K KAPPA X X CHI
A A LAMBDA v 12 PSI
M u MU Q w OMEGA
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TECHNICAL TRIGONOMETRY INTRODUCTION

The following review material is presented for the student’s information. This
material is basic and should be referred to often. Although there are no problems
submitted with these basics, the student should apply the principles with little or no
difficulty.

ALGEBRA

A. Ratio and Proportion

(1) fa:b=c:dor if ais tob as c is to d, or, as it is more commonly written,

a C

b d

then ad = be, and, in addition to the proportion already stated, we can write
these other two proportions,
a

b
C—dand

b
a

ol® ola

(2) If the two middle terms are the same, =%, then ad = b2 and b is called

a mean proportional between a and b.

B. Monomials

A monomial is a single term together with its preceding plus ( + ) or minus ( - )
sign indicating whether the monomial is positive or negative.

(+5, —7x2y3, 8ab20)

C. Binomials
A binomial is an algebraic expression of two terms.
(9 - 3y); (4x + 3y); (3a2b + 4c3d2)

D. Trinomials
A trinomial is an algebraic expression of three terms.

(5x - Txy + 9y)

E. Polynomials

A polynomial is an algebraic expression of two or more terms. Thus, binomials
and trinomials may also be defined as polynomials.

F. Exponent

An exponent is a small figure or letter written to the right and slightly above
a quantity to indicate how many times the quantity is to be used as a factor.

(’73) means T7-7-7;(a + b)3 means (a + b) (a + b) (a + b)

xii



TECHNICAL TRIGONOMETRY INTRODUCTION

G. Power

A power of a number is the result obtained by multiplying that number by itself

a definite number of times.

. 1
8 is the third power of 2; 23 -222 =38 23:—213=712—_—2=§

In the study of trigonometry there will be many opportunities to use formulas
and theorems which have been developed in earlier courses. A few of these are
outlined below for reference.

GEOMETRY
A. Triangle
(1) The area of a right triangle is equal to one-half the product of the base
and height.
1
A = > bh h

b

Any one of the sides of a triangle may be considered the base. Note, too,
that an altitude may fall outside the triangle.

|
| ALTITUDE OR
I
|

‘_5~ HEIGHT

3y

sl
L— BASE —»-]

(2) Two sides, and hence two angles, of an isosceles triangle are equal.
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TECHNICAL TRIGONOMETRY INTRODUCTION

4. The sum of the three angles of any plane triangle must equal 180°.
L A+ LB+ ,C = 180°

B. Circle

(1) The circumference of a circle is equal to 27 times the radius, or 7 times
the diameter. (7 is equal to 3.14159)

C =7nd,or C = 27r 4

(2) The area of a circle is equal to 7 times the square of the radius.

A=1rr2

D
2

Also, since the radius of a circle is % the diameter Dor r =
can be expressed as:

, the area

(3) Two or more circles are said to be concentric when they have the same
center.

A
BOTH CIRCLES A& B HAVE
THE SAME CENTER

(4) Any angle measured at the center of a circle intercepts an arc of the same
angle on the circumference of the circle.
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TECHNICAL TRIGONOMETRY INTRODUCTION

C. Function Notation

One of the most important fundamental mathematical concepts is the function
notation. A simple explanation of function in terms of our everyday surroundings
will serve to simplify the concept. One function of our police department is traffic
control; another function is protection of our homes and property.

If we were to express this relationship in mathematical terms we could let x
stand for the police department, y stand for traffic control, and z for protection.

Therefore, a function of x is y and another function of x is z. In mathematical
symbols we can write y = f(x),z = f(x), or y,z = £(x). The notation of f(x)does not
mean f multiplied by x, but that f is simply an operational symbol or operator.

If we were to let x stand for another agency of our government, the functions
y and z would stand for entirely different things, such as tax collection or waste
disposal. Therefore, the interpretation of y and z depend upon the selection of x.
Since y and z depend upon X, we define X as the independent variable and y and z or
both as the dependent variable or variables.

The same reasoning as above applies to mathematical formulas. For example,
y=%x,if f(x) =3 theny = f(3) or y = 3
y-3=x,iff(x) =4 theny-3=4o0ry="17
y=x-2q,if f(x) = (q2+ 1) theny=q2—2q+1 5
=(@-1(@-1)=(-1)
y=6X,iff(x) = 2 then y2 = 36
We can now more precisely define a function as the medium between two sets of
numbers, such that when one number from the first set is given, the number from the
second set can be determined. Therefore, y is called a function of x if, whenever x
is known, y can be found.
Examples: 1. y =6x+ 3 3. y=6%

3, 452 -
2. y=x2+3x5-4x+4 4.y=x—;—‘fx5——5

As shown above, in each case, if x is known, y can be computed. This then allows
us to call x the independent variable and y, the dependent variable. Should we wish to
speak of an unknown function, or functions in general, the accepted symbol is:

y = {(x)
and reads y is equal to f of X, or y equals the function of x. Further, it does not imply
that x is multiplied by f but merely an operator that produces from each quantity for
X, a quantity for y.

Examples: y = 6x+ 3 from above and x = 3 f(x) =6:-3+3=21
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Unit I
RADIAN MEASURE
There are two basic methods for determining the dimensions of a circle, namely,

physical or actual measurement and computation or mathematical solution.

1.

CIRCUMFERENCE OF A CIRCLE

We know that the distance around the perimeter of a circle is the circumference,
and that this dimension can be computed as well as actually measured.

-
/
/
’(ﬂ>
\
\
\% \\ ________ —_Y

L—— CIRCUMFERENCE OF CIRCLE —F'I

FIG. I —I

PHYSICAL MEASUREMENT

The physical measurement method is very simple for circles or wheels of
small size or those not too heavy to handle; however, in those cases where we are
dealing with circles or wheels which do not lend themselves to physical measurement,
we must compute this quantity. The formula used is:

Circumference = 27Radius = 360°
Notice that a circle is actually a generated figure. This basic fact is needed

for the balance of this Unit. Above we state that: C = 27R = 360°. The question
now arises: What does 360 degrees actually mean?

As an aid in answering this question, let us generate a circle. We can do this
by a simple process using a thumbtack, a piece of string and a pencil. Tying the
string between the thumbtack and the pencil, push the thumbtack into a flat board,
and pull the string tight while holding the pencil vertical to the board.

(R) STRING

(0) THUMB TACK

FIG.1—2

Now rotate the pencil all the way around the thumbtack and back to the original
starting point, scribing a neat circle. Let us cail the string “R” or “Radius” and the
thumbtack “O” or the “Origin”.



TECHNICAL TRIGONOMETRY RADIAN MEASURE

It is now feasible to consider
the measurement of the angle. If we
rotate the pencil again, but this time
through only a short distance, mark
the finish point, and connect this point
with the center of the circle, we have
generated an “arc”.

A preferred method of describ-
ing this is to visualize a rigid form of
radius such as a pole or stick, fastened
so that it may be rotated about the ori-
gin, free to stop at any desired point.

ARC

The increments of rotation of the radius from a starting point
are most commonly referred to as DEGREES. (1)

Any segment of the circumference expressed in degrees may be divided into
smaller segments by ordinary division. A degree is 1/360 of the circumference of a
circle or an angle at the center of a circle that intercepts 1/360 of the circumference.

C = 27R = 360°

1 Degree (°) is 1/360 of a circumference
1 Minute (‘) is 1/60 of a degree or 60’ = 1°
1 Second (”) is 1/60 of a minute or 607 = 1’

CIRCUMFERENCE OF

CIRCLE
ANGLE IN DEGREES
!
ORIGIN s
30° ANGLE
R
c
ORIGINS R_§
1 ANGLE ~5™>

1° ANGLE
C

FIG.1—4

(1)

There is no mathematical reason for the use of the degree, minute, or
second. It is conjecture that the Babylonians used 360 as the base of their
number system, which, in turn, was based on their year having 360 days.
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