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PREFACE

That part of applied mathematics which we call asymptotic analysis or
perturbation methods is a fast-moving field where new results are
continually being published on both methods and applications. The
papers in this field are spread throughout the literature and can be
found in the established mathematical journals and in current publi-
cations connected with parts of physics, engineering sciences, biology
etc. This demonstrates the importance of asymptotic analysis, having
so many relations with various parts of mathematics and applied fields,
but it doesnot make it easy to keep track of the new literature.

The realisation of this fact triggered off the idea to publish a
Lecture Notes mainly of a surveying character and when sounded out at
several international conferences during 1981 met with an unanimously
positive reaction. Most people who were invited to contribute, sent in
a paper and the result is not a complete, but a fairly representative
survey of the modern literature. We also note that some of the sub-
jects which are lacking, like the asymptotics of free boundary problems
or singular perturbations of spectra,are covered by recent conferences
on asymptotic analysis. See for instance the Oberwolfach Conference
Proceedings on Singular Perturbations 1981, LectureNotes inMathematics
342, W. Eckhaus and E.M. de Jager, eds.

The patience which I had to maintain as editor was matched by the
patience of quite a number of authors to whom I suggested alterations
and additions. In a few cases I asked for and obtained external
referee reports.

0f the three contributions from the Soviet-Union two were written in
English (Bakai and Bogaevsky/Povzner). The third paper was written in
Russian and it is a pleasure to acknowledge the assistance of Peter

Schuur with the translation and editing of this text.

Ferdinand Verhulst
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PART 1

SURVEY PAPERS



DYNAMICAL SYSTEMS DRIVEN BY SMALL WHITE NOISE:
ASYMPTOTIC ANALYSIS AND APPLICATIONS

by

Z. Schuss
Department of Mathematics
Tel Aviv University
Ramat Aviv, Israel

and
B. J. Matkowsky
Department of Engineering Sciences and Applied Mathematics

Northwestern University
Evanston, Illinois

1. First Passage Problems in Stochastic Differential Equations of Mathematical

Physics

The notion of white noise was introduced by Einstein [30] as a model for a par-
ticle immersed in a fluid, and subjected to random forces, due to its collisions
with the particles of the surrounding medium. The motion of such a particle is
referred to as Brownian motion. This notion led Langevin [31] to introduce a white
noise perturbation term into Newton's equations of motion, as a model for the
dynamics of a particle which moves in an external field of forces, but which, in
addition, is subjected to the irregular forces of the surrounding medium. Of par-
ticular interest is the situation in which the particle is originally caught in a
potential well, but may escape in the course of time, by passing over a potential
barrier. This situation was considered by Kramers [14], who introduced the motion
of a Brownian particle in a potential well, as a model for chemical reactions.
Kramers' model is a very convenient tool for modeling a variety of physical phenom-
ena involving random collisions or thermal fluctuations. Thus the Langevin equation
has been used as a model for atomic migration in crystals [26,32], ionic*conductivity
[20], the effect of fast electrons in laser plasma [33], chemical reations [14,21],
the effect of thermal fluctuations on Josephson junction devices [2], to name but
a few.

In the case of Josephson junctions, the dynamical system describing the junc-
tion is more complicated than that described by Kramers. The system is not trapped
in a potential well, but rather is attracted by a stable limit cycle. It eventually
breaks away from the domain of attraction of the limit cycle, due to the thermal
white noise present in the system, and reachers a stable equilibrium state. This

latter state is again described by Kramers' model.



In the theory of communication, in filtering signals from noisy measurements
in particular, the dynamics of the system describing the process, is also of the
type described above. Thus for example the dynamical system describing the esti-
mation errors of the phase locked loop (PLL) (a demodulator for FM transmission)
contains white noise type perturbation terms. These random terms drive the system
away from one stable equilibrium state into another thus causing the PLL to occa-
sionally lose its lock. This effect, called cycle slipping, leads to degradation
in the performance of the PLL [4,24,25]. We now describe the various models.

In section 2 we describe Kramers' diffusion model mathematically. Here we
describe various physical models leading to Kramers' problem. In 1940, H. A.
Kramers [14] introduced a diffusion model for chemical reactions. In this model
the reacting particle is caught in a potential well U(x) (which corresponds to the
chemical bonding forces) and is subjected to random collisions with the surrounding
medium. The particle will eventually be pushed over the potential barrier by the
random forces due to collisions. The mean escape time T determines the reaction
rate k by
1
2T

(1.1) K =

Here k is the fraction of particles entering the reaction per unit time. The factor
%'expresses the fact that a particle reaching the barrier either returns or crosses
with equal probabilities. In the simplest case of dissociation for example, the

factor ¢ enters the equation for the reactant concentration c(t) in the form
dc
-2 e =«
dt/

The first expression for k was given by Arrhenius in the form

K = \)e_Q/kT

where Q is the height of the potential barrier, k is Boltzmann's constant, T is tem-
perature and v is a preexponential factor, characteristic of a given reaction.
Kramers' purpose was to give a microscopic model of the motion of the reacting par-
ticle and thus to find the dependence of k on the properties of the medium, e.g.

on the viscosity 8 and temperature T. Kramers used the Langevin equation of motion

(1.2) % + Bx + U'(x) = V2BkT w
to describe the dynamics of the reaction. To compute Kk he considered the Fokker-—

Planck equation for the transition probability density p(x,x,t)

3P _ ap _ . 9p E_(- kT 3p
ad) ae - VO g o R v B P Y Ak

This method of determining x« from (1.3) is not easily generalized to dimensions
higher than one, though in the case of large dissipation such generalization was
given by Landauer and Swanson [15]. We introduce a new method for computing k. It
is based on a boundary value approach to the problem rather than on equation (1.3),

and is readily generalized to higher dimensions.



The quantity ;-appears in many other physical problems. Thus, for example, T
determines the diffusion constant for atomic migration in a crystal as follows.
The potential U(x) in a crystal is a periodic function of period A, say. The
thermal vibrations of the crystallic lattice create a random force acting on a
diffusing particle so that equation (1.2) can be used to describe its motion. Due
to this random force the particle performs a random walk between the equilibrium
states in the potential wells by making jumps of size * )\ at time intervals ?.apart,
on the average. Thus the probability of getting from x to y in time t = nt is given

by
p(x,y,nt) = 7 p(x+X,y,(n-1)1) + 7 p(x-A,y,(n-1)1)

Expanding in T and A we obtain

3p _ A 322 _ 822

= — :D

ot — . 2 2
2t dx ax

Thus the diffusion coefficient D is given by
(1.4) =2
21
In higher dimensions the diffusion coefficient is replaced by a diffusion tensor
which depends on the structure of the crystallic lattice (cf. [26,32]).

To determine the diffusion tensor for nonisotropic lattices, e.g. the zinc
lattice, we note that the jump frequencies will be different in different directions
and the probability of passage through the saddle points connecting the potential
wells may be different in different directions as well. As an example, the dif-
fusion coefficient in the (x,y)-plane may differ from that in the z-direction, so
that the diffusion equation will take the form

2 2 2
a__u+§_u>+ 2% _au
D1<ax2 3y2 Dzazz at
The different values of Dl and D2 may be caused by jump frequencies in the (x,y)-
plane which differ from those in the z-direction. 1In addition, differences in the
sizes of the jumps as well as differences in the probabilities of the jumps may
cause the diffusion coefficients D1 and D2 to differ. This last situation is best

illustrated by an example. Consider a lattice in which the interstitial particle

may move from one cell to another along one of 6 possible paths as shown in Fig. 1.1.
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Fig. 1.1. Hexagonal lattice



Let the jump probabilities along lines with one, two or three hatches have prob-
abilities q, p and r respectively. Thus 2(p+q+7r) = 1. The backward Kolmogorov

equation for the transition probability of this random walk is given by

P(x,y,a,b,(n+1)1)
= (Probability of reaching the point (x,y) in the lattice in time

(n+1)T given that initially the particle is at (a,b))

= r[P(x,y,a+A,b,nt) + P(x,y,a-X,b,nt)]

/3 _ —
+p[P(X,y,a+'l—)\,b+!~3‘)\,nT + P x,y,a—l)\,b—/—g)\,nr)]
2 2 2 2
+q[P x,y,a—i)\,b+§>\,n? +P(x,y,a+l>\,b-§)\,n?)].
2 2 2 2
Thus
P(x,y,a,b,(n+1)T) - P(x,y,a,b,nr)
= Pt(x,y,a,b,nr);-+ o(7)
AZ — 1 1 —
= 5_.[Paa$x,y,a,b,n1) (Zr + 7P + 7 q) + Pab(x,y,a,b,nr)
— 3 2
x /3(p-q) + P (x,y,a,bon1) 5 (ptq) [+ 007
Thus

N =

i
gz=ﬁ[;+_iiﬁ+/g(p_q)ﬁ+;( )ﬁ]
3t o 2 aaz 3asdb 2 3b

Therefore, the diffusion matrix has the form

2 %(%4—31’) -'z/—g(p—q)

b
2t | /3, 3(1 )
2 (p-q) o\72 ~ r
In principal axis coordinates, D is given by
Al 0
D =
0 xz
where
XZ
A 8 == [1 + V1 - 12(pq + qr + pr) ]
L2

This example illustrates how the diffusion coefficients may differ in different
directions. In fact however, in-plane anisotropic effects in hexagonal lattices
are not observed experimentally. They are observed in other lattices, e.g. in
orthorhombic lattices.

More generally, let the possible sites into which a particle, initially located
at the origin, can jump be given by the vectors z) = (zi,zi,zi) (k=1,"*+,2n).

Furthermore, assume that the jumps occur at time intervals t apart, with



probabilities Pys Py respectively, where ;: p; = 1. Then the transition prob-

i
ability of the random walk satisfies the backward equation
(1.5)  P(x,y,(n+1)T) = ZP(x+zj,y,nr)pj
j=1

where x = (xl,xz,x3), y = (yl,yz,yB). Hence, expanding the left and right hand
sides (1.5) in Taylor series about nt and zj respectively, and retaining only the
leading terms we obtain
3P 2 82P
ot i1 ij axiaxj ’
where t = nt and
n Noa
(1.6) Dij = Z; pkz;zi/r
k=1
We have used the facts that Zn+j = - Zj and pn+j = pj(j=1,'--,n), which follows
from the periodicity of the lattice, in order to cancel the first order spatial
derivatives. Thus, the distribution of the exit points, as well as the expected
exit time, determines the diffusion matrix in the lattice [24,25,32,18,26].
Next we consider a model for the conductivity of ionic crystals [20,25,40].
We thus consider the motion of an ion of charge q in a crystal which is subjected

to a uniform electrostatic field. In a simplified one dimensional model, the

potential U is given by

(1.7) U(x) = m—l[—qu4-qKsi11wx] , A< x<T
and

U~»> as |x| * & s
(cf. Fig. 1.2). Here the periodic term represents the internal potential of the
crystal, and the linear term represents the potential of the external electrostatic

field.

4
$(x)

Fig. 1.2. Potential for ionic conductivity in crystals



In the absence of diffusion, a particle trapped at R cannot move to S.
Therefore the mere presence of an external field E will not cause conductance,
unless it is sufficiently strong. Nevertheless, ionic conductivity is observed
even for weak electrostatic fields. Thus we attribute ionic conductivity to dif-
fusion. We observe that the potential barrier to be overcome for a motion from R
to S to occur is Q = U(P) - U(R), which is lower than the potential barrier
Q* = U(P) - U(S), which must be overcome for a motion from S to R. To compute the
conductivity of the crystal, we compute the net current I = IRS = ISR flowing from
R to S, and employ it in

_al
(1.8) 0=y .

where V = U(S) - U(R), is the potential difference between S and R. We note that V
is given by

(1.99 v=q-q" =-2E

wm

Now, the current flowing to the right is

- G
(1.10) T == ,
R

while the current flowing to the left is

1.1y 1. =9

where ?ﬁ and ;L are the average times required to overcome the potential barriers
* : : . -
Q and Q" respectively, and C denotes the concentration of ions. Combining (1.8)-

(1.11) with (3.5) we obtain

2 _ 2nqE
oy ( ST (s Y

ok Anzm

which is valid for kT << mQ. If %E << 1, then the leading term in the asymptotic
expansion of (1.12) with respect to the parameter Eﬁ is given by

2
_ CqwK -mH/kT
(1.13) 95 = Z0kmm © ’

where H = ZEﬂ-is the value of Q when E = 0. We recall from (1.4) and (3.5) that
the quantity %%; e—mﬂ/kT is the one-dimensional diffusion coefficient for atomic
migration in crystals. Therefore (1.13) may be written as

ca’n
(1.14) %9 = kT
This formula for ionic conductance was derived by Nernst and Einstein (cf. [25]).
Thus formula (1.12) is a generalization of the Nernst-Einstein formula, since (1.12)

reduces to (1.14) for small Eﬁ . In nonisotropic crystals, D = {Dij} is a diffusion

tensor so that o = {cij} is a conductance tensor. A formula for {Di
(1.6).

j} is given by



The Nernst-Einstein formula (1.14) expresses the fact that the ratio of the
current flow to the applied electric field E is a constant, depending on the prop-
erties of the crystal, but independent of E. Thus the current is a linear function
of E so that Ohm's law is obeyed. 1In contrast, formula (1.12) exhibits a nonlinear
dependence of ¢ on E, which for small applied electric fields reduces to (1.14).
This nonlinear effect has been observed experimentally [39].

We now describe the Josephson junction tunnel, which leads to a model that is
similar to, yet different from Kramers' model. A Josephson tunnel consists of two
superconductors separated by a thin insulator. 1In its simplest form the Josephson
effect claims that up to a certain current the voltage across a sufficiently thin

tunnel junction is zero and the I-V characteristic is shown in Fig. 1.3.

1
o 05 ) s 20
V2w

Fig. 1.3. 1I-V characteristics

At temperature sufficiently close to the transition temperature, thermal fluc-
tuations can disrupt the coupling of the phases of the order parameters of the
junction. The dc-Josephson current thereby acquires a noise voltage with a non-zero
average value. Consider a Josephson junction in series with a large external resis-
tance and battery, so that the junction is essentially being driven by a constant-
current source. The equations of state are then
(1.15) dg/dt = 2eV/A

Cdv

(1.16) it

=1 - IJ(T)sin 9 - V/R + L(t)

Equation (1.16) is the Josephson eondition relating to 6, the difference in phases
of the order parameter on opposite sides of the junction, and V, the potential dif-
ference. We assume that the area of the junction is sufficiently small so that in
the absence of external magnetic fields the current is uniformly distributed over
the area. Equation (1.16) expresses the condition of the conservation of charge:

C is the capacitance of the junction; IJ(T) is the maximum Josephson current at
temperature T in the absence of noise; R is the resistance of the junction (assumed
constant in the range of temperatures under consideration, i.e. a few degrees Ko);

and L(t) is a fluctuating noise current assumed to be L(t) = —%E w, where w is



dependence of these lifetimes on the DC-SQUID parameters, on the external driving
current I and on the external magnetic flux ¢ex

Here we find this dependence for the shunted DC-SQUID (Bc < 1). 1In this case
we use the Smoluchowski approximation of the Fokker-Planck equation [25]. The
resulting problem is equivalent to the exit problem of a particle out of a two
dimensional potential well, a case for which Kramers' results [14] can not be used
and have to be extended. Such an extension was done by Landauer and Swanson for a
single saddle point [15]. Here, however, we use a new method based on the results
of Matkowsky and Schuss [19-22]. Using this method we compute the mean lifetime in
a two dimensional potential well with several saddle points on its boundary and the
relative probability of exit through each saddle point. These results can be used
to construct the I-V characteristics of the DC-SQUID. Numerical simulations for
such a DC-SQUID were carried out by Tesche and Clarke [37]. We note that this
method can be applied to elements containing more than two coupled Josephson
junctions.

We consider a DC-SQUID which consists of two identical Josephson junctions
and which is driven by an external current source I and an external magnetic flux

®ex’ as shown in Fig. 1.4. Assuming the RSJ model [23,28] for the junctions we

Fig. 1.4. The DC-SQUID model

obtain the following equations of motion for Bi's, the phase differences across

the junctions [37,38]

. . . _ i_ _ _
(1.19) 61 & Gel + sin 01 = 2IJ K(el 92-+eex)
.+ GO, + sin 6, = ==— +K(8,-0,+6_)
2 2 9 21, 17%27  ex
where
2el
_ = 1/2 2 _ J
G = (wJRC) = 8 ’ J = hC
(1:200 ® 210
K = 0 4 _ ex 5. = h
2nLIJ ex & 2 0~ 2e



standard white noise. Setting

Y = hI (T)/oT , x=T1/I(T) ,
Q= RC(ZeIJ/hC)l/z , RC = e ,
p = (hC/2e)V , M= (h/2e)’C , L = (%g) i
U= - %‘YT(XB + cos 8)
we obtain
.17 =M 5 B == - LD
There are three cases to be considered. (i) n is large, i.e. n > 1, say

(ii) 1 > n > %I'w, where Q is the height of the potential barrier, and mz = U"(GO)

. A . . kT
where 8, = 7 - arcsin x, and (iii) n is small, that is n < 6~ W .

0
(i) For large n the Smoluchowski approximation can be used [25]. It is
given by

6'(s) = g§-+ VIKT w' (s)

where t = nMs. In this case we have

x(2 arcsinx-1) + 2 l—x:Z

Q

x(m+ 2 arcsinx) + 2 1—x2

/ / 2
—%— . l—x2 sinh&exp[—Z(l—x'+xarcsinx>/kT]E_nYLTf(x).
T

mYT kT
L R

*
Q
so that [20]

(1.18)

r-l|||—4

Now, since the average voltage is proportional to <6> we have

y-m /1l 1
enM\ — —
% R
so that
V = Kf(x)

where K is a constant (cf. (1.12)). This agrees with [1] where a different method
has been used. Their method is restricted to the one dimensional case, where
explicit solutions can be obtained. Cases (ii) and (iii) are discussed in Section 7.

In the case of a system of several independent Josephson junctions and several
independent thermal e.m.f.'s one obtains a system of stochastic differential equa-
tions so that a higher dimensional analysis is called for. This is the case, for
example, of the DC-SQUID model [35].

The DC-SQUID with small coupling (LIJ > h/2e), where L is the self inductance
and IJ is the junctions critical current) has several types of meta-stable states
[36,38] and therefore it can be used as a logic element. At a finite temperature
the thermal noise causes spontaneous transitions between the various states. Hence,

the meta-stable states have finite mean lifetimes. It is of interest to know the



R and C are the resistance and capacitance of the junctions and time is measured
in units of w}l. Assuming the ring is made of a super-conductor whose thickness
is bigger than the Josephson penetration depth, we have
2 1 ¢0
where & is the total magnetic flux through the ring.
Equations (1.19) can be interpreted as the equations of motion of a particle

with unit mass and dissipation G in a two dimensional field derived from the

potential U(Sl,ez) given by
(1.21)  U(8,,8.) =L k6, -6,+8 )2 - cos 8, - cos 8, - == (8, +6.)
: 1’72 2 1 2 ex 1 2 ZIJ i 2

Note that the energy is measured in units of ¢OIJ/2W. The potential surfaces

U(el,ez) are shown in Fig. 1.5.
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Fig. 1.5. Potential energy surfaces for I/IJ = 0.5. (a) K= 1/w, U(el,ez), eex =

m

(b) X = 0.2, eeX =0; (¢) K=0.1, eex =3



